ADALINE

Architecture:

 $\vec{w} = (w_0, w_1, \dots, w_n)$ and $\vec{x} = (x_0, x_1, \dots, x_n)$ where $x_0 = 1$. Activity:

• inner potential: $\xi = w_0 + \sum_{i=1}^n w_i x_i = \sum_{i=0}^n w_i x_i = \vec{w} \cdot \vec{x}$

- activation function: $\sigma(\xi) = \xi$
- network function: $y[\vec{w}](\vec{x}) = \sigma(\xi) = \vec{w} \cdot \vec{x}$

ADALINE

Learning:

Given a training set

$$\mathcal{T} = \left\{ \left(\vec{x}_1, d_1 \right), \left(\vec{x}_2, d_2 \right), \dots, \left(\vec{x}_p, d_p \right) \right\}$$

Here $\vec{x}_k = (x_{k0}, x_{k1} \dots, x_{kn}) \in \mathbb{R}^{n+1}$, $x_{k0} = 1$, is the *k*-th input, and $d_k \in \mathbb{R}$ is the expected output.

Intuition: The network is supposed to compute an affine approximation of the function (some of) whose values are given in the training set.

Oaks in Wisconsin

DBH Age (years) (inch) 97 12.5 93 12.5 88 8.0 81 9.5 75 16.5 57 11.0 52 10.5 45 9.0 6.0 28 1.5 15 12 1.0 11 1.0

Error function:

$$E(\vec{w}) = \frac{1}{2} \sum_{k=1}^{p} \left(\vec{w} \cdot \vec{x}_{k} - d_{k} \right)^{2} = \frac{1}{2} \sum_{k=1}^{p} \left(\sum_{i=0}^{n} w_{i} x_{ki} - d_{k} \right)^{2}$$

• The goal is to find \vec{w} which minimizes $E(\vec{w})$.

Error function

5

Gradient of the error function

Consider gradient of the error function:

$$\nabla E(\vec{w}) = \left(\frac{\partial E}{\partial w_0}(\vec{w}), \dots, \frac{\partial E}{\partial w_n}(\vec{w})\right)$$

Intuition: $\nabla E(\vec{w})$ is a vector in the **weight space** which points in the direction of the *steepest ascent* of the error function. Note that the vectors \vec{x}_k are just parameters of the function *E*, and are thus fixed!

Fact

If $\nabla E(\vec{w}) = \vec{0} = (0, \dots, 0)$, then \vec{w} is a global minimum of E.

For ADALINE, the error function $E(\vec{w})$ is a convex paraboloid and thus has the unique global minimum.

Gradient - illustration

Caution! This picture just illustrates the notion of gradient ... it is not the convex paraboloid $E(\vec{w})$!

Gradient of the error function (ADALINE)

$$\begin{aligned} \frac{\partial E}{\partial w_{\ell}}(\vec{w}) &= \frac{1}{2} \sum_{k=1}^{p} \frac{\delta E}{\delta w_{\ell}} \left(\sum_{i=0}^{n} w_{i} x_{ki} - d_{k} \right)^{2} \\ &= \frac{1}{2} \sum_{k=1}^{p} 2 \left(\sum_{i=0}^{n} w_{i} x_{ki} - d_{k} \right) \frac{\delta E}{\delta w_{\ell}} \left(\sum_{i=0}^{n} w_{i} x_{ki} - d_{k} \right) \\ &= \frac{1}{2} \sum_{k=1}^{p} 2 \left(\sum_{i=0}^{n} w_{i} x_{ki} - d_{k} \right) \left(\sum_{i=0}^{n} \left(\frac{\delta E}{\delta w_{\ell}} w_{i} x_{ki} \right) - \frac{\delta E}{\delta w_{\ell}} d_{k} \right) \\ &= \sum_{k=1}^{p} \left(\vec{w} \cdot \vec{x}_{k} - d_{k} \right) x_{k\ell} \end{aligned}$$

Thus

$$\nabla E(\vec{w}) = \left(\frac{\partial E}{\partial w_0}(\vec{w}), \dots, \frac{\partial E}{\partial w_n}(\vec{w})\right) = \sum_{k=1}^{p} \left(\vec{w} \cdot \vec{x}_k - d_k\right) \vec{x}_k$$

ADALINE - learning

Batch algorithm (gradient descent):

Idea: In every step "move" the weights in the direction *opposite* to the gradient.

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$

- weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- ▶ in the step t + 1, weights $\vec{w}^{(t+1)}$ are computed as follows: $\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon \cdot \nabla E(\vec{w}^{(t)})$

$$= \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^{p} \left(\vec{w}^{(t)} \cdot \vec{x}_{k} - d_{k} \right) \cdot \vec{x}_{k}$$

Here $k = (t \mod p) + 1$ and $0 < \varepsilon \le 1$ is a *learning rate*.

Proposition

For sufficiently small $\varepsilon > 0$ the sequence $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ converges (componentwise) to the global minimum of E (i.e. to the vector \vec{w} satisfying $\nabla E(\vec{w}) = \vec{0}$).

ADALINE – Animation

Error function Linear regression by gradient descent 8000 10 6000 S 4000 error > 2000 0 0 50 100 150 0 2 0 200 -2 4 Iterations х

Linear regression by gradient descent

Error function

ADALINE - learning

Online algorithm (Delta-rule, Widrow-Hoff rule):

- weights in $\vec{w}^{(0)}$ initialized randomly close to 0
- in the step t + 1, weights $\vec{w}^{(t+1)}$ are computed as follows:

$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon(t) \cdot \left(\vec{w}^{(t)} \cdot \vec{x}_k - d_k\right) \cdot \vec{x}_k$$

Here $k = t \mod p + 1$ and $0 < \varepsilon(t) \le 1$ is a learning rate in the step t + 1.

Note that the algorithm does not work with the complete gradient but only with its part determined by the currently considered training example.

Theorem (Widrow & Hoff)

If $\varepsilon(t) = \frac{1}{t}$, then $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ converges to the global minimum of E.

How to use the ADALINE for classification?

The training set is

$$\mathcal{T} = \left\{ \left(\vec{x}_1, d_1 \right), \left(\vec{x}_2, d_2 \right), \dots, \left(\vec{x}_p, d_p \right) \right\}$$

kde $\vec{x}_k = (x_{k0}, x_{k1}, \dots, x_{kn}) \in \mathbb{R}^{n+1}$ a $d_k \in \{1, -1\}$. Here d_k determines a class.

- Train the network using the ADALINE algorithm.
- We may expect the following:
 - if $d_k = 1$, then $\vec{w} \cdot \vec{x}_k \ge 0$
 - if $d_k = -1$, then $\vec{w} \cdot \vec{x}_k < 0$
- This does not have to be always true but if the training set is reasonably linearly separable, then the algorithm typically gives satisfactory results.

Architecture – Multilayer Perceptron (MLP)

- Neurons partitioned into layers; one input layer, one output layer, possibly several hidden layers
- layers numbered from 0; the input layer has number 0
 - E.g. three-layer network has two hidden layers and one output layer
- Neurons in the *i*-th layer are connected with all neurons in the *i* + 1-st layer
- Architecture of a MLP is typically described by numbers of neurons in individual layers (e.g. 2-4-3-2)

MLP – architecture

Notation:

- Denote
 - X a set of input neurons
 - Y a set of output neurons
 - Z a set of all neurons $(X, Y \subseteq Z)$
- ▶ individual neurons denoted by indices *i*, *j* etc.
 - ξ_j is the inner potential of the neuron j after the computation stops
 - ► y_j is the output of the neuron *j* after the computation stops

(define $y_0 = 1$ is the value of the formal unit input)

► *w_{ji}* is the weight of the connection **from** *i* **to** *j*

(in particular, w_{j0} is the weight of the connection from the formal unit input, i.e. $w_{i0} = -b_i$ where b_i is the bias of the neuron *j*)

- *j*← is a set of all *i* such that *j* is adjacent from *i* (i.e. there is an arc **to** *j* from *i*)
- j[→] is a set of all *i* such that *j* is adjacent to *i* (i.e. there is an arc **from** *j* to *i*)

MLP – activity

Activity:

inner potential of neuron j:

$$\xi_j = \sum_{i \in j_{\leftarrow}} w_{ji} y_i$$

- ► activation function σ_j for neuron *j* (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_j(\xi) = \frac{1}{1 + e^{-\lambda_j \xi}}$]
- State of non-input neuron j ∈ Z \ X after the computation stops:

$$\mathbf{y}_j = \sigma_j(\xi_j)$$

 $(y_j$ depends on the configuration \vec{w} and the input \vec{x} , so we sometimes write $y_j(\vec{w}, \vec{x})$)

The network computes a function R^{|X|} do R^{|Y|}. Layer-wise computation: First, all input neurons are assigned values of the input. In the *l*-th step, all neurons of the *l*-th layer are evaluated.

MLP – learning

Learning:

• Given a training set ${\mathcal T}$ of the form

$$\left\{ \left(\vec{x}_k, \vec{d}_k \right) \mid k = 1, \dots, p \right\}$$

Here, every $\vec{x}_k \in \mathbb{R}^{|X|}$ is an *input vector* end every $\vec{d}_k \in \mathbb{R}^{|Y|}$ is the desired network output. For every $j \in Y$, denote by d_{kj} the desired output of the neuron j for a given network input \vec{x}_k (the vector \vec{d}_k can be written as $(d_{kj})_{i \in Y}$).

Error function:

$$E(\vec{w}) = \sum_{k=1}^{p} E_k(\vec{w})$$

where

$$E_k(\vec{w}) = \frac{1}{2} \sum_{j \in Y} (y_j(\vec{w}, \vec{x}_k) - d_{kj})^2$$

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$

- weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- In the step t + 1 (here t = 0, 1, 2...), weights w^(t+1) are computed as follows:

$$w_{ji}^{(t+1)} = w_{ji}^{(t)} + \Delta w_{ji}^{(t)}$$

where

$$\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial \boldsymbol{\mathsf{E}}}{\partial \boldsymbol{w}_{ji}}(\vec{\boldsymbol{w}}^{(t)})$$

is a weight update of w_{ji} in step t + 1 and $0 < \varepsilon(t) \le 1$ is a learning rate in step t + 1.

Note that $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t)})$ is a component of the gradient ∇E , i.e. the weight update can be written as $\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon(t) \cdot \nabla E(\vec{w}^{(t)})$.

MLP – error function gradient

For every w_{ji} we have

$$\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$$

where for every $k = 1, \ldots, p$ holds

$$\frac{\partial \boldsymbol{E}_k}{\partial \boldsymbol{w}_{ji}} = \frac{\partial \boldsymbol{E}_k}{\partial \boldsymbol{y}_j} \cdot \sigma'_j(\boldsymbol{\xi}_j) \cdot \boldsymbol{y}_i$$

and for every $j \in Z \setminus X$ we get

$$\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y$$
$$\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\rightarrow}} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj} \qquad \text{for } j \in Z \smallsetminus (Y \cup X)$$

(Here all y_j are in fact $y_j(\vec{w}, \vec{x}_k)$).

MLP – error function gradient

• If
$$\sigma_j(\xi) = \frac{1}{1+e^{-\lambda_j\xi}}$$
 for all $j \in Z$, then
 $\sigma'_j(\xi_j) = \lambda_j y_j (1-y_j)$

and thus for all $j \in Z \setminus X$:

$$\frac{\partial E_k}{\partial y_j} = y_j - d_{kj} \qquad \text{for } j \in Y$$
$$\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\rightarrow}} \frac{\partial E_k}{\partial y_r} \cdot \lambda_r y_r (1 - y_r) \cdot w_{rj} \quad \text{for } j \in Z \smallsetminus (Y \cup X)$$

• If $\sigma_j(\xi) = \mathbf{a} \cdot \tanh(\mathbf{b} \cdot \xi_j)$ for all $j \in \mathbf{Z}$, then

$$\sigma'_j(\xi_j) = \frac{b}{a}(a - y_j)(a + y_j)$$

MLP – computing the gradient

Compute $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{p} \frac{\partial E_k}{\partial w_{ji}}$ as follows: Initialize $\mathcal{E}_{ji} := 0$ (By the end of the computation: $\mathcal{E}_{ji} = \frac{\partial E}{\partial w_{ij}}$)

For every $k = 1, \ldots, p$ do:

- **1. forward pass:** compute $y_j = y_j(\vec{w}, \vec{x}_k)$ for all $j \in Z$
- **2. backward pass:** compute $\frac{\partial E_k}{\partial y_j}$ for all $j \in Z$ using *backpropagation* (see the next slide!)

3. compute
$$\frac{\partial E_k}{\partial w_{ji}}$$
 for all w_{ji} using

$$\frac{\partial E_k}{\partial w_{ji}} := \frac{\partial E_k}{\partial y_j} \cdot \sigma'_j(\xi_j) \cdot y_i$$

4.
$$\mathcal{E}_{ji} := \mathcal{E}_{ji} + \frac{\partial E_k}{\partial w_{ji}}$$

The resulting \mathcal{E}_{ji} equals $\frac{\partial E}{\partial w_{ji}}$.

Compute $\frac{\partial E_k}{\partial y_i}$ for all $j \in Z$ as follows:

• if
$$j \in Y$$
, then $\frac{\partial E_k}{\partial y_j} = y_j - d_{kj}$

if *j* ∈ *Z* \ *Y* ∪ *X*, then assuming that *j* is in the *ℓ*-th layer and assuming that ∂*E_k*/∂*y_r* has already been computed for all neurons in the ℓ + 1-st layer, compute

$$\frac{\partial E_k}{\partial y_j} = \sum_{r \in j^{\rightarrow}} \frac{\partial E_k}{\partial y_r} \cdot \sigma'_r(\xi_r) \cdot w_{rj}$$

(This works because all neurons of $r \in j^{\rightarrow}$ belong to the $\ell + 1$ -st layer.)

Complexity of the batch algorithm

Computation of $\frac{\partial E}{\partial w_{ji}}(\vec{w}^{(t-1)})$ stops in time linear in the size of the network plus the size of the training set.

(assuming unit cost of operations including computation of $\sigma'_r(\xi_r)$ for given ξ_r)

Proof sketch: The algorithm does the following *p* times:

- **1.** forward pass, i.e. computes $y_j(\vec{w}, \vec{x}_k)$
- **2.** backpropagation, i.e. computes $\frac{\partial E_k}{\partial y_i}$
- **3.** computes $\frac{\partial E_k}{\partial w_{ji}}$ and adds it to \mathcal{E}_{ji} (a constant time operation in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be estimated ...

MLP – learning algorithm

Online algorithm:

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$

- weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- In the step t + 1 (here t = 0, 1, 2...), weights w^(t+1) are computed as follows:

$$w_{ji}^{(t+1)} = w_{ji}^{(t)} + \Delta w_{ji}^{(t)}$$

where

$$\Delta w_{ji}^{(t)} = -\varepsilon(t) \cdot \frac{\partial \boldsymbol{E_k}}{\partial w_{ji}}(w_{ji}^{(t)})$$

is the weight update of w_{ji} in the step t + 1 and $0 < \varepsilon(t) \le 1$ is the *learning rate* in the step t + 1.

There are other variants determined by selection of the training examples used for the error computation (more on this later).

Illustration of the gradient descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork

Animation (sin(x)), network 1-5-1)

One iteration:

10 iterations: