ADALINE

Architecture:

$\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{n}\right)$ and $\vec{x}=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ where $x_{0}=1$.

Activity:

- inner potential: $\xi=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}=\sum_{i=0}^{n} w_{i} x_{i}=\vec{w} \cdot \vec{x}$
- activation function: $\sigma(\xi)=\xi$
- network function: $y[\vec{w}](\vec{x})=\sigma(\xi)=\vec{w} \cdot \vec{x}$

ADALINE

Learning:

- Given a training set

$$
\mathcal{T}=\left\{\left(\vec{x}_{1}, d_{1}\right),\left(\vec{x}_{2}, d_{2}\right), \ldots,\left(\vec{x}_{p}, d_{p}\right)\right\}
$$

Here $\vec{x}_{k}=\left(x_{k 0}, x_{k 1} \ldots, x_{k n}\right) \in \mathbb{R}^{n+1}, x_{k 0}=1$, is the k-th input, and $d_{k} \in \mathbb{R}$ is the expected output.

Intuition: The network is supposed to compute an affine approximation of the function (some of) whose values are given in the training set.

Oaks in Wisconsin

| Age
 (years) | DBH
 (inch) |
| ---: | ---: | ---: |
| 97 | 12.5 |
| 93 | 12.5 |
| 88 | 8.0 |
| 21 | 9.5 |
| 75 | 16.5 |
| 57 | 11.0 |
| 52 | 10.5 |
| 45 | 9.0 |
| 28 | 6.0 |
| 15 | 1.5 |
| 12 | 1.0 |
| 11 | 1.0 |

ADALINE

- Error function:

$$
E(\vec{w})=\frac{1}{2} \sum_{k=1}^{p}\left(\vec{w} \cdot \vec{x}_{k}-d_{k}\right)^{2}=\frac{1}{2} \sum_{k=1}^{p}\left(\sum_{i=0}^{n} w_{i} x_{k i}-d_{k}\right)^{2}
$$

- The goal is to find \vec{w} which minimizes $E(\vec{w})$.

Error function

Error Surface of a Linear Neuron with Two Input Weights

Gradient of the error function

Consider gradient of the error function:

$$
\nabla E(\vec{w})=\left(\frac{\partial E}{\partial w_{0}}(\vec{w}), \ldots, \frac{\partial E}{\partial w_{n}}(\vec{w})\right)
$$

Intuition: $\nabla E(\vec{w})$ is a vector in the weight space which points in the direction of the steepest ascent of the error function.
Note that the vectors \vec{x}_{k} are just parameters of the function E, and are thus fixed!

Fact

If $\nabla E(\vec{w})=\overrightarrow{0}=(0, \ldots, 0)$, then \vec{w} is a global minimum of E.
For ADALINE, the error function $E(\vec{w})$ is a convex paraboloid and thus has the unique global minimum.

Gradient - illustration

Caution! This picture just illustrates the notion of gradient ... it is not the convex paraboloid $E(\vec{w})$!

Gradient of the error function (ADALINE)

$$
\begin{aligned}
\frac{\partial E}{\partial w_{\ell}}(\vec{w}) & =\frac{1}{2} \sum_{k=1}^{p} \frac{\delta E}{\delta w_{\ell}}\left(\sum_{i=0}^{n} w_{i} x_{k i}-d_{k}\right)^{2} \\
& =\frac{1}{2} \sum_{k=1}^{p} 2\left(\sum_{i=0}^{n} w_{i} x_{k i}-d_{k}\right) \frac{\delta E}{\delta w_{\ell}}\left(\sum_{i=0}^{n} w_{i} x_{k i}-d_{k}\right) \\
& =\frac{1}{2} \sum_{k=1}^{p} 2\left(\sum_{i=0}^{n} w_{i} x_{k i}-d_{k}\right)\left(\sum_{i=0}^{n}\left(\frac{\delta E}{\delta w_{\ell}} w_{i} x_{k i}\right)-\frac{\delta E}{\delta w_{\ell}} d_{k}\right) \\
& =\sum_{k=1}^{p}\left(\vec{w} \cdot \vec{x}_{k}-d_{k}\right) x_{k \ell}
\end{aligned}
$$

Thus

$$
\nabla E(\vec{w})=\left(\frac{\partial E}{\partial w_{0}}(\vec{w}), \ldots, \frac{\partial E}{\partial w_{n}}(\vec{w})\right)=\sum_{k=1}^{p}\left(\vec{w} \cdot \vec{x}_{k}-d_{k}\right) \vec{x}_{k}
$$

ADALINE - learning

Batch algorithm (gradient descent):

Idea: In every step "move" the weights in the direction opposite to the gradient.
The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$.

- weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t+1$, weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\begin{aligned}
\vec{w}^{(t+1)} & =\vec{w}^{(t)}-\varepsilon \cdot \nabla E\left(\vec{w}^{(t)}\right) \\
& =\vec{w}^{(t)}-\varepsilon \cdot \sum_{k=1}^{p}\left(\vec{w}^{(t)} \cdot \vec{x}_{k}-d_{k}\right) \cdot \vec{x}_{k}
\end{aligned}
$$

Here $k=(t \bmod p)+1$ and $0<\varepsilon \leq 1$ is a learning rate.

Proposition

For sufficiently small $\varepsilon>0$ the sequence $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$ converges (componentwise) to the global minimum of E (i.e. to the vector \vec{w} satisfying $\nabla E(\vec{w})=\overrightarrow{0})$.

ADALINE - Animation

Linear regression by gradient descent

ADALINE - learning

Online algorithm (Delta-rule, Widrow-Hoff rule):

- weights in $\vec{w}^{(0)}$ initialized randomly close to 0
- in the step $t+1$, weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
\vec{w}^{(t+1)}=\vec{w}^{(t)}-\varepsilon(t) \cdot\left(\vec{w}^{(t)} \cdot \vec{x}_{k}-d_{k}\right) \cdot \vec{x}_{k}
$$

Here $k=t \bmod p+1$ and $0<\varepsilon(t) \leq 1$ is a learning rate in the step $t+1$.

Note that the algorithm does not work with the complete gradient but only with its part determined by the currently considered training example.

Theorem (Widrow \& Hoff)

If $\varepsilon(t)=\frac{1}{t}$, then $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$ converges to the global minimum of E.

ADALINE - classification

How to use the ADALINE for classification?

- The training set is

$$
\mathcal{T}=\left\{\left(\vec{x}_{1}, d_{1}\right),\left(\vec{x}_{2}, d_{2}\right), \ldots,\left(\vec{x}_{p}, d_{p}\right)\right\}
$$

kde $\vec{x}_{k}=\left(x_{k 0}, x_{k 1}, \ldots, x_{k n}\right) \in \mathbb{R}^{n+1}$ a $d_{k} \in\{1,-1\}$.
Here d_{k} determines a class.

- Train the network using the ADALINE algorithm.
- We may expect the following:
- if $d_{k}=1$, then $\vec{w} \cdot \vec{x}_{k} \geq 0$
- if $d_{k}=-1$, then $\vec{w} \cdot \vec{x}_{k}<0$
- This does not have to be always true but if the training set is reasonably linearly separable, then the algorithm typically gives satisfactory results.

Architecture - Multilayer Perceptron (MLP)

- Neurons partitioned into layers; one input layer, one output layer, possibly several hidden layers
- layers numbered from 0; the input layer has number 0
- E.g. three-layer network has two hidden layers and one output layer
- Neurons in the i-th layer are connected with all neurons in the $i+1$-st layer
- Architecture of a MLP is typically described by numbers of neurons in individual layers (e.g. 2-4-3-2)

MLP - architecture

Notation:

- Denote
- X a set of input neurons
- Y a set of output neurons
- Z a set of all neurons ($X, Y \subseteq Z$)
- individual neurons denoted by indices i, j etc.
- ξ_{j} is the inner potential of the neuron j after the computation stops
- y_{j} is the output of the neuron j after the computation stops
(define $y_{0}=1$ is the value of the formal unit input)
- $w_{j i}$ is the weight of the connection from i to j
(in particular, $w_{j 0}$ is the weight of the connection from the formal unit
input, i.e. $w_{j 0}=-b_{j}$ where b_{j} is the bias of the neuron j)
- j_{\leftarrow} is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)
- $j \rightarrow$ is a set of all i such that j is adjacent to i (i.e. there is an arc from j to i)

MLP - activity

Activity:

- inner potential of neuron j :

$$
\xi_{j}=\sum_{i \in j_{\leftarrow}} w_{j i} y_{i}
$$

- activation function σ_{j} for neuron j (arbitrary differentiable) [e.g. logistic sigmoid $\sigma_{j}(\xi)=\frac{1}{1+\mathrm{e}^{-\lambda_{j} \xi}}$]
- State of non-input neuron $j \in Z \backslash X$ after the computation stops:

$$
y_{j}=\sigma_{j}\left(\xi_{j}\right)
$$

(y_{j} depends on the configuration \vec{w} and the input \vec{x}, so we sometimes write $y_{j}(\vec{w}, \vec{x})$)

- The network computes a function $\mathbb{R}^{|X|}$ do $\mathbb{R}^{|Y|}$. Layer-wise computation: First, all input neurons are assigned values of the input. In the ℓ-th step, all neurons of the ℓ-th layer are evaluated.

MLP - learning

Learning:

- Given a training set \mathcal{T} of the form

$$
\left\{\left(\vec{x}_{k}, \vec{d}_{k}\right) \quad \mid \quad k=1, \ldots, p\right\}
$$

Here, every $\vec{x}_{k} \in \mathbb{R}^{|X|}$ is an input vector end every $\vec{d}_{k} \in \mathbb{R}^{|Y|}$ is the desired network output. For every $j \in Y$, denote by $d_{k j}$ the desired output of the neuron j for a given network input \vec{x}_{k} (the vector \vec{d}_{k} can be written as $\left.\left(d_{k j}\right)_{j \in Y}\right)$.

- Error function:

$$
E(\vec{w})=\sum_{k=1}^{p} E_{k}(\vec{w})
$$

where

$$
E_{k}(\vec{w})=\frac{1}{2} \sum_{j \in Y}\left(y_{j}\left(\vec{w}, \vec{x}_{k}\right)-d_{k j}\right)^{2}
$$

MLP - learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t+1$ (here $t=0,1,2 \ldots$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
w_{j i}^{(t+1)}=w_{j i}^{(t)}+\Delta w_{j i}^{(t)}
$$

where

$$
\Delta w_{j i}^{(t)}=-\varepsilon(t) \cdot \frac{\partial E}{\partial w_{j i}}\left(\vec{w}^{(t)}\right)
$$

is a weight update of $w_{j i}$ in step $t+1$ and $0<\varepsilon(t) \leq 1$ is a learning rate in step $t+1$.

Note that $\frac{\partial E}{\partial w_{j i}}\left(\vec{w}^{(t)}\right)$ is a component of the gradient ∇E, i.e. the weight update can be written as $\vec{w}^{(t+1)}=\vec{w}^{(t)}-\varepsilon(t) \cdot \nabla E\left(\vec{w}^{(t)}\right)$.

MLP - error function gradient

For every $w_{j i}$ we have

$$
\frac{\partial E}{\partial w_{j i}}=\sum_{k=1}^{p} \frac{\partial E_{k}}{\partial w_{j i}}
$$

where for every $k=1, \ldots, p$ holds

$$
\frac{\partial E_{k}}{\partial w_{j i}}=\frac{\partial E_{k}}{\partial y_{j}} \cdot \sigma_{j}^{\prime}\left(\xi_{j}\right) \cdot y_{i}
$$

and for every $j \in Z \backslash X$ we get

$$
\begin{array}{ll}
\frac{\partial E_{k}}{\partial y_{j}}=y_{j}-d_{k j} & \text { for } j \in Y \\
\frac{\partial E_{k}}{\partial y_{j}}=\sum_{r \in j \rightarrow} \frac{\partial E_{k}}{\partial y_{r}} \cdot \sigma_{r}^{\prime}\left(\xi_{r}\right) \cdot w_{r j} & \text { for } j \in Z \backslash(Y \cup X)
\end{array}
$$

(Here all y_{j} are in fact $\left.y_{j}\left(\vec{w}, \vec{x}_{k}\right)\right)$.

MLP - error function gradient

- If $\sigma_{j}(\xi)=\frac{1}{1+e^{-\lambda_{j} \xi}}$ for all $j \in Z$, then

$$
\sigma_{j}^{\prime}\left(\xi_{j}\right)=\lambda_{j} y_{j}\left(1-y_{j}\right)
$$

and thus for all $j \in Z \backslash X$:

$$
\begin{array}{ll}
\frac{\partial E_{k}}{\partial y_{j}}=y_{j}-d_{k j} & \text { for } j \in Y \\
\frac{\partial E_{k}}{\partial y_{j}}=\sum_{r \in j \rightarrow} \frac{\partial E_{k}}{\partial y_{r}} \cdot \lambda_{r} y_{r}\left(1-y_{r}\right) \cdot w_{r j} & \text { for } j \in Z \backslash(Y \cup X)
\end{array}
$$

- If $\sigma_{j}(\xi)=a \cdot \tanh \left(b \cdot \xi_{j}\right)$ for all $j \in Z$, then

$$
\sigma_{j}^{\prime}\left(\xi_{j}\right)=\frac{b}{a}\left(a-y_{j}\right)\left(a+y_{j}\right)
$$

MLP - computing the gradient

Compute $\frac{\partial E}{\partial w_{i j}}=\sum_{k=1}^{p} \frac{\partial E_{k}}{\partial w_{i j}}$ as follows:
Initialize $\mathcal{E}_{j j}:=0$
(By the end of the computation: $\mathcal{E}_{j i}=\frac{\partial E}{\partial w_{j i}}$)
For every $k=1, \ldots, p$ do:

1. forward pass: compute $y_{j}=y_{j}\left(\vec{w}, \vec{x}_{k}\right)$ for all $j \in Z$
2. backward pass: compute $\frac{\partial E_{k}}{\partial y_{j}}$ for all $j \in Z$ using backpropagation (see the next slide!)
3. compute $\frac{\partial E_{k}}{\partial w_{i j}}$ for all $w_{j i}$ using

$$
\frac{\partial E_{k}}{\partial w_{j i}}:=\frac{\partial E_{k}}{\partial y_{j}} \cdot \sigma_{j}^{\prime}\left(\xi_{j}\right) \cdot y_{i}
$$

4. $\mathcal{E}_{j i}:=\mathcal{E}_{j i}+\frac{\partial E_{k}}{\partial w_{j i}}$

The resulting $\mathcal{E}_{j i}$ equals $\frac{\partial E}{\partial w_{j i}}$.

MLP - backpropagation

Compute $\frac{\partial E_{k}}{\partial y_{j}}$ for all $j \in Z$ as follows:

- if $j \in Y$, then $\frac{\partial E_{k}}{\partial y_{j}}=y_{j}-d_{k j}$
- if $j \in Z \backslash Y \cup X$, then assuming that j is in the ℓ-th layer and assuming that $\frac{\partial E_{k}}{\partial y_{t}}$ has already been computed for all neurons in the $\ell+1$-st layer, compute

$$
\frac{\partial E_{k}}{\partial y_{j}}=\sum_{r \in j=} \frac{\partial E_{k}}{\partial y_{r}} \cdot \sigma_{r}^{\prime}\left(\xi_{r}\right) \cdot w_{r j}
$$

(This works because all neurons of $r \in j \rightarrow$ belong to the $\ell+1$-st layer.)

Complexity of the batch algorithm

Computation of $\frac{\partial \mathrm{E}}{\partial w_{j}}\left(\vec{w}^{(t-1)}\right)$ stops in time linear in the size of the network plus the size of the training set. (assuming unit cost of operations including computation of $\sigma_{r}^{\prime}\left(\xi_{r}\right)$ for given ξ_{r})

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes $y_{j}\left(\vec{w}, \vec{x}_{k}\right)$
2. backpropagation, i.e. computes $\frac{\partial E_{k}}{\partial y_{j}}$
3. computes $\frac{\partial E_{k}}{\partial w_{j i}}$ and adds it to $\mathcal{E}_{j i}$ (a constant time operation in the unit cost framework)
The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be estimated ...

MLP - learning algorithm

Online algorithm:

The algorithm computes a sequence of weight vectors
$\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- weights in $\vec{w}^{(0)}$ are randomly initialized to values close to 0
- in the step $t+1$ (here $t=0,1,2 \ldots$), weights $\vec{w}^{(t+1)}$ are computed as follows:

$$
w_{j i}^{(t+1)}=w_{j i}^{(t)}+\Delta w_{j i}^{(t)}
$$

where

$$
\Delta w_{j i}^{(t)}=-\varepsilon(t) \cdot \frac{\partial E_{k}}{\partial w_{j i}}\left(w_{j i}^{(t)}\right)
$$

is the weight update of $w_{j i}$ in the step $t+1$ and $0<\varepsilon(t) \leq 1$ is the learning rate in the step $t+1$.

There are other variants determined by selection of the training examples used for the error computation (more on this later).

Illustration of the gradient descent - XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork

Animation $(\sin (x))$, network 1-5-1)

One iteration:

10 iterations:

