
ADALINE

Architecture:

x1 x2 xn

· · ·

y

~x0 = 1
w0

w1 w2 wn

~w = (w0,w1, . . . ,wn) and ~x = (x0, x1, . . . , xn) where x0 = 1.

Activity:
I inner potential: ξ = w0 +

∑n
i=1 wixi =

∑n
i=0 wixi = ~w · ~x

I activation function: σ(ξ) = ξ

I network function: y[~w](~x) = σ(ξ) = ~w · ~x
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ADALINE

Learning:

I Given a training set

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
Here ~xk = (xk0, xk1 . . . , xkn) ∈ Rn+1, xk0 = 1, is the k -th
input, and dk ∈ R is the expected output.

Intuition: The network is supposed to compute an affine approximation of the
function (some of) whose values are given in the training set.
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Oaks in Wisconsin
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ADALINE

I Error function:

E(~w) =
1
2

p∑
k=1

(
~w · ~xk − dk

)2
=

1
2

p∑
k=1

 n∑
i=0

wixki − dk


2

I The goal is to find ~w which minimizes E(~w).
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Error function
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Gradient of the error function

Consider gradient of the error function:

∇E(~w) =

(
∂E
∂w0

(~w), . . . ,
∂E
∂wn

(~w)

)

Intuition: ∇E(~w) is a vector in the weight space which points in
the direction of the steepest ascent of the error function.
Note that the vectors ~xk are just parameters of the function E, and are thus
fixed!

Fact
If ∇E(~w) = ~0 = (0, . . . ,0), then ~w is a global minimum of E.
For ADALINE, the error function E(~w) is a convex paraboloid and thus has
the unique global minimum.
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Gradient - illustration

Caution! This picture just illustrates the notion of gradient ... it is not
the convex paraboloid E(~w) !
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Gradient of the error function (ADALINE)

∂E
∂w`

(~w) =
1
2

p∑
k=1

δE
δw`

 n∑
i=0

wixki − dk


2

=
1
2

p∑
k=1

2

 n∑
i=0

wixki − dk

 δEδw`

 n∑
i=0

wixki − dk


=

1
2

p∑
k=1

2

 n∑
i=0

wixki − dk


 n∑

i=0

(
δE
δw`

wixki

)
−
δE
δw`

dk


=

p∑
k=1

(
~w · ~xk − dk

)
xk`

Thus

∇E(~w) =

(
∂E
∂w0

(~w), . . . ,
∂E
∂wn

(~w)

)
=

p∑
k=1

(
~w · ~xk − dk

)
~xk
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ADALINE - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2), . . ..
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1, weights ~w(t+1) are computed as follows:

~w(t+1) = ~w(t)
− ε · ∇E(~w(t))

= ~w(t)
− ε ·

p∑
k=1

(
~w(t)
· ~xk − dk

)
· ~xk

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is a learning rate.

Proposition
For sufficiently small ε > 0 the sequence ~w(0), ~w(1), ~w(2), . . .
converges (componentwise) to the global minimum of E (i.e. to
the vector ~w satisfying ∇E(~w) = ~0).
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ADALINE – Animation
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ADALINE - learning

Online algorithm (Delta-rule, Widrow-Hoff rule):
I weights in ~w(0) initialized randomly close to 0
I in the step t + 1, weights ~w(t+1) are computed as follows:

~w(t+1) = ~w(t)
− ε(t) ·

(
~w(t)
· ~xk − dk

)
· ~xk

Here k = t mod p + 1 and 0 < ε(t) ≤ 1 is a learning rate
in the step t + 1.

Note that the algorithm does not work with the complete gradient but
only with its part determined by the currently considered training
example.

Theorem (Widrow & Hoff)
If ε(t) = 1

t , then ~w(0), ~w(1), ~w(2), . . . converges to the global
minimum of E.
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ADALINE - classification

How to use the ADALINE for classification?
I The training set is

T =
{(
~x1,d1

)
,
(
~x2,d2

)
, . . . ,

(
~xp ,dp

)}
kde ~xk = (xk0, xk1, . . . , xkn) ∈ Rn+1 a dk ∈ {1,−1}.
Here dk determines a class.

I Train the network using the ADALINE algorithm.
I We may expect the following:

I if dk = 1, then ~w · ~xk ≥ 0
I if dk = −1, then ~w · ~xk < 0

I This does not have to be always true but if the training set
is reasonably linearly separable, then the algorithm
typically gives satisfactory results.

12



Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
I Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

I layers numbered from 0; the
input layer has number 0

I E.g. three-layer network has
two hidden layers and one
output layer

I Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

I Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)
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MLP – architecture

Notation:
I Denote

I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
I wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)
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MLP – activity

Activity:
I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable)
[ e.g. logistic sigmoid σj(ξ) = 1

1+e−λjξ
]

I State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration ~w and the input ~x, so we sometimes
write yj(~w, ~x) )

I The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the `-th step,
all neurons of the `-th layer are evaluated.
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MLP – learning

Learning:
I Given a training set T of the form{ (

~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function:

E(~w) =

p∑
k=1

Ek (~w)

where

Ek (~w) =
1
2

∑
j∈Y

(
yj(~w, ~xk ) − dkj

)2

16



MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2), . . ..
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(~w(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E
∂wji

(~w(t)) is a component of the gradient ∇E, i.e. the weight update
can be written as ~w(t+1) = ~w(t)

− ε(t) · ∇E(~w(t)).
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MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr ) · wrj for j ∈ Z r (Y ∪ X)

(Here all yj are in fact yj(~w, ~xk )).
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MLP – error function gradient

I If σj(ξ) = 1
1+e−λjξ

for all j ∈ Z , then

σ′j (ξj) = λjyj(1 − yj)

and thus for all j ∈ Z r X :

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· λryr (1 − yr ) · wrj for j ∈ Z r (Y ∪ X)

I If σj(ξ) = a · tanh(b · ξj) for all j ∈ Z , then

σ′j (ξj) =
b
a

(a − yj)(a + yj)
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MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(~w, ~xk ) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji + ∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.
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MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

I if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

I if j ∈ Z r Y ∪ X , then assuming that j is in the `-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ` + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr ) · wrj

(This works because all neurons of r ∈ j→ belong to the `+ 1-st layer.)
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Complexity of the batch algorithm

Computation of ∂E
∂wji

(~w(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr )

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(~w, ~xk )

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...
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MLP – learning algorithm

Online algorithm:

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2), . . ..
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji + ∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂Ek

∂wji
(w(t)

ji )

is the weight update of wji in the step t + 1 and 0 < ε(t) ≤ 1
is the learning rate in the step t + 1.

There are other variants determined by selection of the training examples
used for the error computation (more on this later).
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Illustration of the gradient descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork
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Animation (sin(x)), network 1-5-1)

One iteration:

10 iterations:

20 iterations:

40 iterations:

100 iterations:
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