ADALINE

Architecture:

y

X0—1—>

w%/ o

n

W = (Wo, Wq,...,Wp) and X = (X, X1,...,Xn) Where xo = 1.
Activity:
» inner potential: & = wo + L7 wiXj = L7 o Wix; = W+ X
» activation function: ¢(&) =&
» network function: y[w](X) = o(&) = w - X

ADALINE

Learning:

» Given a training set
T ={(%,ch), (% &), .., (%, dbp)]

Here)_()k = (Xko, Xk ...,an) €]Rn+1, Xko = 1, is the k-th
input, and dx € R is the expected output.

Intuition: The network is supposed to compute an affine approximation of the
function (some of) whose values are given in the training set.

Age |DBH ‘ Oak Diameter vs. Age

(years) |(inch)
[97| 125
93| 12.5
88 8.0
81| 9.5
75| 16.5
57| 11.0
52| 10.5
45| 9.0
28| 6.0
15 1.5

F T T T T T T T T T A

15

[y
<

DBH (inch)

12 1.0 % 20 40 60 80 100
11 1.0 Age (years)

ADALINE

» Error function:

n

p p 2
) = 33 (55 -af = 33 [% oo
k=1 k=1

i=0

» The goal is to find w which minimizes E(w).

Error function

oy
RS0,

Gradient of the error function

Consider gradient of the error function:

VE(#) = (a_E(W),..., j_vi(m

Intuition: VE(W) is a vector in the weight space which points in
the direction of the steepest ascent of the error function.

Note that the vectors X, are just parameters of the function E, and are thus
fixed!

Fact

- =2 - . . .
If VE(w)=0=(0,...,0), then w is a global minimum of E.
For ADALINE, the error function E(w) is a convex paraboloid and thus has
the unique global minimum.

A
0. 0% %
;QQQ:\
R
s s, ;

G2
Yo7
00177 o4

.

n ' -

=t
=

Caution! This picture just illustrates the notion of gradient ... it is not
the convex paraboloid E(w) !

Gradient of the error function (ADALINE)

2
JE 1 SE [
a—w(W) = 3 Z oW [Z WiXki — dk)

ADALINE - learning

Batch algorithm (gradient descent):
Idea: In every step "move" the weights in the direction opposite
to the gradient.
The algorithm computes a sequence of weight vectors
w©®, W), W, .
» weights in w(%) are randomly initialized to values close to 0
» inthe step t + 1, weights w(t+1) are computed as follows:
wth = @) — . vE(WD)

p
— W(t)_g.Z(W(t).zk_dk).;k
k=1
Here k = (t mod p) + 1 and 0 < ¢ < 1 is a learning rate.
Proposition
For sufficiently small ¢ > 0 the sequence w(®, w("), w(2), .
converges (componentwise) to the global minimum of E (i.e. to
the vector w satisfying VE(w) = 0).

Linear regression by gradient descent Error function

f=
C =
(=
w -
f=]
(=0
(=1
L=
g & |
s 9
f=
o _|
i=
o
o
T T T T T T T T T T
-4 -2 0 2 4 0 50 100 150 200
X lterations
Linear regression by gradient descent Error function

ADALINE - learning

Online algorithm (Delta-rule, Widrow-Hoff rule):
» weights in w(®) initialized randomly close to 0
» inthe step t + 1, weights w(i+1) are computed as follows:

W(H_1) _ W(t) _ e(t) . (VT/(T) . f(‘k - dk) .)_()k

Here k =t mod p+1and 0 < ¢(t) < 1is a learning rate
inthe step t 4 1.

Note that the algorithm does not work with the complete gradient but

only with its part determined by the currently considered training
example.

Theorem (Widrow & Hoff)
If e(t) = 1, then w®, w(), w2, ... converges to the global
minimum of E.

ADALINE - classification

How to use the ADALINE for classification?
» The training set is

T ={(%. 1), (%) .. (%o)}

kde)_()k = (Xko,Xk1,. ..,an) e R a dk S {1,—1 }
Here di determines a class.
» Train the network using the ADALINE algorithm.
» We may expect the following:
» ifdy =1,thenwW-X >0
» ifdy =—1,thenw- X, <0
» This does not have to be always true but if the training set
is reasonably linearly separable, then the algorithm
typically gives satisfactory results.

Architecture — Multilayer Perceptron (MLP)

» Neurons partitioned into layers;
one input layer, one output layer,
possibly several hidden layers

Q Q
m layers numbered from 0; the
input layer has number 0
OY OO,

Y1 Y2
Output

v

» E.g. three-layer network has

two hidden layers and one
Hidden / \ output layer
O O O O » Neurons in the i-th layer are
connected with all neurons in
W the i + 1-st layer
» Architecture of a MLP is typically

Input O O described by numbers of neurons
xooox in individual layers (e.g. 2-4-3-2)

13

MLP - architecture

Notation:

» Denote
» X a set of input neurons
» Y a set of output neurons
» Z asetof allneurons (X, Y C 2)
» individual neurons denoted by indices i, j etc.
» ¢;is the inner potential of the neuron j after the computation
stops
> y; is the output of the neuron j after the computation stops
(define yo = 1 is the value of the formal unit input)
> w;i is the weight of the connection from i to j

(in particular, wy, is the weight of the connection from the formal unit
input, i.e. wjp = —b; where by is the bias of the neuron j)
» j_ is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)
» j~ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

MLP - activity
Activity:
» inner potential of neuron j:

&= Z Wijiyi

i€j

» activation function o; for neuron j (arbitrary differentiable)
[e.g. logistic sigmoid ¢;(&)

_ 1
14V]

» State of non-input neuron j € Z \ X after the computation
stops:
yi = 0i(&))

(y; depends on the configuration w and the input X, so we sometimes
write y;(w, X))

> The network computes a function RX! do R, Layer-wise computation:
First, all input neurons are assigned values of the input. In the ¢-th step,
all neurons of the ¢-th layer are evaluated.

MLP - learning

Learning:
» Given a training set 7 of the form

{(zk,a’k) | k= 1,...,p}

Here, every % € RX! is an input vector end every dx € RY!
is the desired network output. For every j € Y, denote by
dx; the desired output of the neuron j for a given network
input Xx (the vector ak can be written as (dkj)jeY)'

» Error function:

MLP - learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w©), w, W, ..
» weights in w(%) are randomly initialized to values close to 0
» inthe step t + 1 (here t = 0,1,2...), weights w('*1) are
computed as follows:

W,(,t+1) _ W(t) + Aw()
where
o _ JE w®
aw = —e(t)- S (W0)

is a weight update of wj instept+1and0 < ¢(t) <1is
a learning rate in step t 4 1.

Note that aE (() is a component of the gradient VE, i.e. the weight update
can be wrltten as Wit = W — ¢(t) - VE(w®).

MLP - error function gradient

For every w;; we have

IE <4 9Ex
o~

where for every k = 1,..., p holds

JEc OE ...
aw; 9y a;(&j) - i

and for every j € Z \ X we get

JdEk .

7=k — dii fi Y

3, i — dij orje

JEx JEx ' .

8_yj_ z a—yr-o,(ér)-w,j forje Z\(YUX)

(Here all y; are in fact y;(w, X))-

MLP - error function gradient

> If 0j(&) = 1+1 for all j € Z, then

e it
ai(&) = Ay(1 - y)

and thus for all j € Z\ X:

JEk .
_8yj = yj— dy forjeY
IE, y JE, .

rej=

» If 0j(&) = a-tanh(b - &) for all j € Z, then

0j(&) = g(a —y)(@+y)

MLP - computing the gradient

JE _ yvp 9Ek .
Compute 5o = Y., _; Gy, as follows:

Initialize &; := 0
(By the end of the computation: &; = 2£)

Iwjj

Forevery k =1,...,p do:

1. forward pass: compute y; = y;(W, %) for all j € Z

2. backward pass: compute % for all j € Z using

backpropagation (see the next slide!)

3. compute 3—5’; for all w;; using
JEx IdEx ., .\
3_Wji = oy ai(&) - yi

4. & =&;i + g_l"f’;

i) 9E
The resulting &; equals TR

20

MLP - backpropagation

Compute 5 aEk for all j € Z as follows:

> IijY then BE"_yj—dk,-

» if je Z\ Y U X, then assuming that j is in the £-th layer and
assuming that aEk has already been computed for all
neurons in the {’ 1t layer, compute

(9Ek = '
ay/ Z ~op(&r) - er

ij

(This works because all neurons of r € j~ belong to the £ + 1-st layer.)

21

Complexity of the batch algorithm

Computation of g—v’fﬂ(vT/("”) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of ¢;(&,) for given &,)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes y;(W, Xk)

IE,
9y,

3. computes aEk and adds it to &;; (a constant time operation
in the unit cost framework)

2. backpropagation, i.e. computes

The steps 1. - 3. take linear time.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

22

MLP - learning algorithm

Online algorithm:

The algorithm computes a sequence of weight vectors
w©), w, W, ..
» weights in w(%) are randomly initialized to values close to 0
» inthe step t + 1 (here t = 0,1,2...), weights w{t1) are
computed as follows:

(t+1) (1) (1)
le. = wji + ijl.
where
) JEx (t)
Aw; " = —e(t) - 8_,-,-(Wl"')

is the weight update of wj; inthe step t +1and 0 < ¢(t) < 1
is the learning rate in the step t + 1.

There are other variants determined by selection of the training examples
used for the error computation (more on this later).

23

mput
representation

hidden
representation

yi

-15 -1 0.5 0 0s 1 15

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork

24

Animation (sin(x)), network 1-5-1)

One iteration:

1.0

NN

0.5
|

0.0

-1.0 0.5
| !
A

10 iterations:

0.16 0.18 0.20 0.22

0.14

25

