Hopfield network - local minima

We look for "deep" minima of E....
We may get suck in a shallow minimum.
Solution: In every state we allow transition to states with higher energy. This transition has a small probability (which will be higher at the beginning and decrease throughout computation).

Boltzmann activity

Activity: States of neurons initially set to values of $\{-1,1\}$, i.e., $y_{j}^{(0)} \in\{-1,1\}$ for $j \in\{1, \ldots, n\}$.

In the step $t+1$ update value of a randomly chosen neuron $j \in\{1, \ldots, n\}$ as follows: Compute the inner potential

$$
\xi_{j}^{(t)}=\sum_{i=1}^{n} w_{j i} y_{i}^{(t)}
$$

choose $y_{j}^{(t+1)} \in\{-1,1\}$ randomly so that

$$
\mathbf{P}\left[y_{j}^{(t+1)}=1\right]=\sigma\left(\xi_{j}^{(t)}\right)
$$

where

$$
\sigma(\xi)=\frac{1}{1+e^{-2 \xi / T(t)}}
$$

The parameter $T(t)$ is called temperature in time t.

Temperature and energy

- High temperature $T(t)$ implies that $\mathbf{P}\left[y_{j}^{(t+1)}=1\right] \approx \frac{1}{2}$ and thus the network behaves almost randomly.
- Very low temperature $T(t)$ implies that either $\mathbf{P}\left[y_{j}^{(t+1)}=1\right] \approx 1$ or $\mathbf{P}\left[y_{j}^{(t+1)}=1\right] \approx 0$ depending on whether $\xi_{j}^{(t)}>0$ or $\xi_{j}^{(t)}<0$. Thus the network behaves almost deterministically (as in the original activity of Hopfield network).

Notes:

- Boltzmann activity = Hopfield activity + random noise,
- energy $E(\vec{y})=-\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} w_{j i} y_{j} y_{i}$ may jump to higher levels (with probability depending on the temperature),
- the probability of transition to higher energy decreases exponentially with the size of the "energy jump".

Simulated annealing

The following approach may help to reach deep minima of E :

- Start with higher temperature $T(t)$
- Gradually reduce the temperature, e.g. as follows:
- $T(t)=\eta^{t} \cdot T(0)$ where $\eta<1$ is close to 1
- or $T(t)=T(0) / \log (1+t)$
- This process resembles annealing used in metallurgy that alters the physical and sometimes chemical properties of a material to increase its ductility and reduce its hardness.
- It also extends physical motivation of Hopfield networks: magnet orientation is now, in addition, influenced by thermal fluctuations.
... and it gets us close to Boltzmann machines.

Boltzmann machine

Architecture:

- Neural network with cycles and symmetric connections (i.e. arbitrary graph)
- N is a set of all neurons.
- Denote by ξ_{j} the inner potential and by y_{j} the output (i.e. state) of neuron j.
State of the machine: $\vec{y} \in\{-1,1\}^{|N|}$.
- Denote by $w_{j i} \in \mathbb{R}$ the weight of the connection from i to j (and thus also from j to i).
- No bias and assume $w_{i j}=0$ for all $j \in N$.

Boltzmann machine

Activity: States of neurons initially set to values of $\{-1,1\}$, i.e. $y_{j}^{(0)} \in\{-1,1\}$ for $j \in N$.

In the step $t+1$ do the following:

- Choose a neuron $j \in N$ randomly with the uniform probability.
- Compute the inner potential of j :

$$
\xi_{j}^{(t)}=\sum_{i \in j_{\leftarrow}}^{n} w_{j i} y_{i}^{(t)}
$$

- Choose $y_{j}^{(t+1)} \in\{-1,1\}$ randomly so that $\mathbf{P}\left[y_{j}^{(t+1)}=1\right]=\sigma\left(\xi_{j}^{(t)}\right)$ where

$$
\sigma(\xi)=\frac{1}{1+e^{-2 \xi / T(t)}}
$$

($T(t)$ is a temperature at time t.)

Boltzmann machine

- High temperature $T(t)$ implies that $\mathbf{P}\left[y_{j}^{(t+1)}=1\right] \approx \frac{1}{2}$ and thus the machine behaves almost randomly.
- Low temperature $T(t)$ means that either $\mathbf{P}\left[y_{j}^{(t+1)}=1\right] \approx 1$ or $\mathbf{P}\left[y_{j}^{(t+1)}=1\right] \approx 0$ depending on whether $\xi_{j}^{(t)}>0$ or $\xi_{j}^{(t)}<0$. Then the machine behaves almost deterministically (as the Hopfield network).

Boltzmann machine represents probability

Goal: Construct a network representing a distribution on a set of vectors $\{-1,1\}^{|N|}$.

Rough idea: Boltzmann machine has states in $\{-1,1\}^{|N|}$, moves randomly from state to state during computation.

If we let the machine run for sufficiently long time (with a fixed temperature), the relative frequencies of visits to states will be independent of the initial state.

We consider these frequencies as probabilities of the states. This gives a probability distribution on $\{-1,1\}^{|N|}$ represented by the machine.

During learning, a probability distribution on states of $\{-1,1\}^{|N|}$ will be given, and we adapt weights so that the frequencies match the given probabilities.

Equilibrium

Fix a temperature T (i.e. $T(t)=T$ for $t=1,2, \ldots$).
Theorem
For every $\gamma^{*} \in\{-1,1\}^{|N|}$ we have that

$$
\lim _{t \rightarrow \infty} \mathbf{P}\left[\vec{y}^{(t)}=\gamma^{*}\right]=\frac{1}{Z} e^{-E\left(\gamma^{*}\right) / T}
$$

where

$$
Z=\sum_{\gamma \in\{-1,1\}^{\mathbb{N} \mid}} e^{-E(\gamma) / T} \quad E(\gamma)=-\frac{1}{2} \sum_{i, j} w_{i j} y_{i}^{\gamma} y_{j}^{\gamma}
$$

the Boltzmann distribution.
Define $p_{N}\left(\gamma^{*}\right):=\lim _{t \rightarrow \infty} \mathbf{P}\left[\vec{y}^{(t)}=\gamma^{*}\right]$ for every $\gamma^{*} \in\{-1,1\}^{|N|}$.

Equilibrium probabilities

Note that

- p_{N} is a probability distribution on $\{-1,1\}^{|N|}$ represented by the machine,
- for a state γ^{*}, we have that $p_{N}\left(\gamma^{*}\right)$ is the probability of γ^{*} in the thermal equilibrium,
- $p_{N}\left(\gamma^{*}\right)$ can be estimated by $\mathbf{P}\left[\vec{y}^{\left(t^{*}\right)}=\gamma^{*}\right]$ for sufficiently large t^{*}
That is, in order to compute $p_{N}\left(\gamma^{*}\right)$ it is sufficient to simulate a computation several times for t^{*} steps and then compute the relative frequency of stopping in γ^{*}.
- By Markov chains theory, $\mathrm{p}_{N}\left(\gamma^{*}\right)$ is the long-run frequency of visits to γ^{*}.
This gives an alternative procedure for estimating $p_{N}\left(\gamma^{*}\right)$: Execute the machine for very long time, compute the relative frequency of visits to γ^{*} along the computation.

Boltzmann machine - learning

To be able to capture more probability distributions, we introduce hidden neurons.

Divide N into two disjoint sets:

- visible neurons V
- hidden neurons H

For $\alpha \in\{-1,1\}^{|V|}$ denote

$$
p_{V}(\alpha)=\sum_{\beta \in\{-1,1\}^{|| |}} p_{N}(\alpha, \beta)
$$

the probability that the state of visible neurons in the thermal equilibrium is α.
Our goal is to adapt weights so that p_{V} corresponds to a given probability distribution on $\{-1,1\}^{|V|}$.

Boltzmann machine - learning

Learning:

Let p_{d} be a probability distribution on the states of visible neurons, i.e. on $\{-1,1\}^{|V|}$.
The distribution p_{d} can be determined by a sequence of training examples:

$$
\mathcal{T}=\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{m}
$$

then

$$
p_{d}(\alpha)=\#(\alpha, \mathcal{T}) / m
$$

here $\#(\alpha, \mathcal{T})$ is the number of occurrences of α in \mathcal{T}.
Our goal is to find a configuration of the network W such that $p_{V} \approx p_{d}$.

Boltzmann machine - learning

A suitable measure of difference between probability distributions p_{V} and p_{d} is relative entropy weighted by probabilities of states (Kullback-Leibler divergence):

$$
\mathcal{E}(W)=\sum_{\alpha \in\{-1,1| | V \mid} p_{d}(\alpha) \ln \frac{p_{d}(\alpha)}{p_{V}(\alpha)}
$$

For p_{d} given by a training set $\mathcal{T}=\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{m}$ we have that minimizing $\mathcal{E}(W)$ is equivalent to maximizing likelihood of \mathcal{T}.

Boltzmann machine - learning

Minimize $\mathcal{E}(\vec{w})$ using gradient descent, i.e. compute a sequence of weight matrices: $W^{(0)}, W^{(1)}, \ldots$

- initialise $W^{(0)}$ randomly, close to 0
- in step $t+1$ compute $W^{(t+1)}$ as follows:

$$
W_{j i}^{(t+1)}=W_{j i}^{(t)}+\Delta W_{j i}^{(t)}
$$

where

$$
\Delta W_{j i}^{(t)}=-\varepsilon(t) \cdot \frac{\partial \mathcal{E}}{\partial w_{j i}}\left(W^{(t)}\right)
$$

is the update of the weight $w_{j i}$ in the step $t+1$ and $0<\varepsilon(t) \leq 1$ is the learning rate in the step $t+1$.
It remains to compute $\frac{\partial \mathcal{E}}{\partial w_{j i}}(W)$.

Boltzmann machine - learning

For sufficiently large t^{*} (i.e. in thermal equilibrium) we have

$$
\frac{\partial \mathcal{E}}{\partial w_{j i}} \approx-\frac{1}{T}\left(\left\langle y_{j}^{\left(t^{*}\right)} y_{i}^{\left(t^{*}\right)}\right\rangle_{\text {fixed }}-\left\langle y_{j}^{\left(t^{*}\right)} y_{i}^{\left(t^{*}\right)}\right\rangle_{\text {free }}\right)
$$

- $\left\langle y_{j}^{\left(t^{*}\right)} y_{i}^{\left(t^{*}\right)}\right\rangle_{\text {fixed }}$ is the expected value of $y_{j}^{\left(t^{*}\right)} y_{i}^{\left(t^{*}\right)}$ in the thermal equilibrium assuming that values of visible neurons are fixed at the beginning of computation according to p_{d}.
- $\left\langle y_{j}^{\left(t^{*}\right)} y_{i}^{\left(t^{*}\right)}\right\rangle_{\text {free }}$ is the expected value of $y_{j}^{\left(t^{*}\right)} y_{i}^{\left(t^{*}\right)}$ in the thermal equilibrium (no values fixed).
Thus

$$
\begin{aligned}
\Delta w_{j i}^{(\ell)} & =-\varepsilon(\ell) \cdot \frac{\partial \mathcal{E}}{\partial w_{j i}}\left(W^{(\ell-1)}\right) \\
& =\frac{\varepsilon(\ell)}{T}\left(\left\langle y_{j}^{\left(t^{*}\right)} y_{i}^{\left(t^{*}\right)}\right\rangle_{\text {fixed }}-\left\langle y_{j}^{\left(t^{*}\right)} y_{i}^{\left(t^{*}\right)}\right\rangle_{\text {free }}\right)
\end{aligned}
$$

Boltzmann machine - learning

Compute $\left\langle y_{j}^{\left(t^{*}\right)} y_{i}^{\left(t^{*}\right)}\right\rangle_{\text {fixed }}$ as follows:

- Let $\mathcal{Y}:=0$ and do the following q times:

1. choose $\alpha \in\{-1,1\}^{|V|}$ randomly according to p_{d},
2. fix values of visible neurons to α and do not update them throughout the remaining steps 3 . and 4.,
3. simulate t^{*} steps, now the current values of neurons j and i are $y_{j}^{\left(t^{*}\right)}$ and $y_{i}^{\left(t^{t}\right)}$, respectively,
4. add $y_{j}^{\left(t^{*}\right)} y_{i}^{\left(t^{*}\right)}$ to \boldsymbol{y}.

- For sufficiently large q, the value Y / q will be a good estimate of $\left\langle y_{j}^{\left(t^{*}\right)} y_{i}^{\left(t^{*}\right)}\right\rangle_{\text {fixed }}$.
$\left\langle y_{j}^{\left(t^{*}\right)} y_{i}^{\left(t^{*}\right)}\right\rangle_{\text {free }}$ can be estimated similarly, the only difference is that the steps 1. and 2. are omitted.

Boltzmann machine - learning

For completeness, the analytic version:

$$
\begin{aligned}
& \left\langle y_{i}^{\left(t^{*}\right)} y_{j}^{\left(t^{*}\right)}\right\rangle_{\text {fixed }}= \\
& \quad=\sum_{\alpha \in\{-1,1\}^{|\mathrm{V}|}} p_{d}(\alpha) \sum_{\beta \in\{-1,1\}^{|S|}} \frac{p_{N}(\alpha, \beta)}{p_{V}(\alpha)} y_{j}^{\alpha \beta} y_{i}^{\alpha \beta}
\end{aligned}
$$

here $y_{j}^{\alpha \beta}$ is the output of the neuron j in the state (α, β).

$$
\left\langle y_{i}^{\left(t^{*}\right)} y_{j}^{\left(t^{*}\right)}\right\rangle_{\text {free }}=\sum_{\gamma \in\{-1,1\}^{|N|}} p_{N}(\gamma) y_{j}^{\gamma} y_{i}^{\gamma}
$$

