
Hopfield network – local minima

We look for "deep" minima of E

We may get suck in a shallow minimum.

Solution: In every state we allow transition to states with higher
energy. This transition has a small probability (which will be higher at
the beginning and decrease throughout computation).

1

Boltzmann activity

Activity: States of neurons initially set to values of {−1,1}, i.e.,
y(0)

j ∈ {−1,1} for j ∈ {1, . . . ,n}.

In the step t + 1 update value of a randomly chosen neuron
j ∈ {1, . . . ,n} as follows: Compute the inner potential

ξ(t)j =

n∑
i=1

wjiy
(t)
i

choose y(t+1)
j ∈ {−1,1} randomly so that

P
[
y(t+1)

j = 1
]

= σ
(
ξ(t)j

)
where

σ(ξ) =
1

1 + e−2ξ/T(t)

The parameter T(t) is called temperature in time t .
2

Temperature and energy

I High temperature T(t) implies that P
[
y(t+1)

j = 1
]
≈

1
2 and thus

the network behaves almost randomly.

I Very low temperature T(t) implies that either P
[
y(t+1)

j = 1
]
≈ 1

or P
[
y(t+1)

j = 1
]
≈ 0 depending on whether ξ(t)j > 0 or ξ(t)j < 0.

Thus the network behaves almost deterministically (as in the
original activity of Hopfield network).

Notes:

I Boltzmann activity = Hopfield activity + random noise,

I energy E(~y) = − 1
2

∑n
j=1

∑n
i=1 wjiyjyi may jump to higher levels

(with probability depending on the temperature),

I the probability of transition to higher energy decreases
exponentially with the size of the "energy jump".

3

Simulated annealing

The following approach may help to reach deep minima of E:

I Start with higher temperature T(t)
I Gradually reduce the temperature, e.g. as follows:

I T(t) = ηt
· T(0) where η < 1 is close to 1

I or T(t) = T(0)/ log(1 + t)

I This process resembles annealing used in metallurgy that alters
the physical and sometimes chemical properties of a material to
increase its ductility and reduce its hardness.

I It also extends physical motivation of Hopfield networks: magnet
orientation is now, in addition, influenced by thermal fluctuations.

... and it gets us close to Boltzmann machines.

4

Boltzmann machine

Architecture:
I Neural network with cycles and symmetric connections

(i.e. arbitrary graph)
I N is a set of all neurons.
I Denote by ξj the inner potential and by yj the output (i.e.

state) of neuron j.
State of the machine: ~y ∈ {−1,1}|N|.

I Denote by wji ∈ R the weight of the connection from i to j
(and thus also from j to i).

I No bias and assume wjj = 0 for all j ∈ N.

5

Boltzmann machine

Activity: States of neurons initially set to values of {−1,1}, i.e.
y(0)

j ∈ {−1,1} for j ∈ N.

In the step t + 1 do the following:
I Choose a neuron j ∈ N randomly with the uniform

probability.
I Compute the inner potential of j:

ξ(t)j =

n∑
i∈j←

wjiy
(t)
i

I Choose y(t+1)
j ∈ {−1,1} randomly so that

P
[
y(t+1)

j = 1
]

= σ(ξ(t)j) where

σ(ξ) =
1

1 + e−2ξ/T(t)

(T(t) is a temperature at time t .)
6

Boltzmann machine

I High temperature T(t) implies that P
[
y(t+1)

j = 1
]
≈

1
2 and

thus the machine behaves almost randomly.

I Low temperature T(t) means that either P
[
y(t+1)

j = 1
]
≈ 1

or P
[
y(t+1)

j = 1
]
≈ 0 depending on whether ξ(t)j > 0 or

ξ(t)j < 0. Then the machine behaves almost
deterministically (as the Hopfield network).

7

Boltzmann machine represents probability

Goal: Construct a network representing a distribution on a set
of vectors {−1,1}|N|.

Rough idea: Boltzmann machine has states in {−1,1}|N|,
moves randomly from state to state during computation.

If we let the machine run for sufficiently long time (with a fixed
temperature), the relative frequencies of visits to states will be
independent of the initial state.

We consider these frequencies as probabilities of the states.
This gives a probability distribution on {−1,1}|N| represented by
the machine.

During learning, a probability distribution on states of {−1,1}|N|

will be given, and we adapt weights so that the frequencies
match the given probabilities.

8

Equilibrium

Fix a temperature T (i.e. T(t) = T for t = 1,2, . . .).

Theorem
For every γ∗ ∈ {−1,1}|N| we have that

lim
t→∞

P
[
~y(t) = γ∗

]
=

1
Z

e−E(γ∗)/T

where

Z =
∑

γ∈{−1,1}|N|
e−E(γ)/T E(γ) = −

1
2

∑
i,j

wijy
γ
i yγj

the Boltzmann distribution.

Define pN(γ∗) := limt→∞ P
[
~y(t) = γ∗

]
for every γ∗ ∈ {−1,1}|N|.

9

Equilibrium probabilities

Note that
I pN is a probability distribution on {−1,1}|N| represented by

the machine,
I for a state γ∗, we have that pN(γ∗) is the probability of γ∗ in

the thermal equilibrium,
I pN(γ∗) can be estimated by P

[
~y(t ∗) = γ∗

]
for sufficiently

large t ∗

That is, in order to compute pN(γ∗) it is sufficient to simulate a
computation several times for t ∗ steps and then compute the relative
frequency of stopping in γ∗.

I By Markov chains theory, pN(γ∗) is the long-run frequency
of visits to γ∗.
This gives an alternative procedure for estimating pN(γ∗): Execute the
machine for very long time, compute the relative frequency of visits to γ∗

along the computation.

10

Boltzmann machine – learning

To be able to capture more probability distributions, we
introduce hidden neurons.

Divide N into two disjoint sets:
I visible neurons V
I hidden neurons H

For α ∈ {−1,1}|V | denote

pV (α) =
∑

β∈{−1,1}|H|
pN(α, β)

the probability that the state of visible neurons in the thermal
equilibrium is α.

Our goal is to adapt weights so that pV corresponds to a given
probability distribution on {−1,1}|V |.

11

Boltzmann machine – learning

Learning:
Let pd be a probability distribution on the states of visible
neurons, i.e. on {−1,1}|V |.

The distribution pd can be determined by a sequence of training
examples:

T = ~x1, ~x2, . . . , ~xm

then

pd(α) = #(α,T)/m

here #(α,T) is the number of occurrences of α in T .

Our goal is to find a configuration of the network W such that
pV ≈ pd .

12

Boltzmann machine – learning

A suitable measure of difference between probability
distributions pV and pd is relative entropy weighted by
probabilities of states (Kullback-Leibler divergence):

E(W) =
∑

α∈{−1,1}|V |
pd(α) ln

pd(α)

pV (α)

For pd given by a training set T = ~x1, ~x2, . . . , ~xm we have that

minimizing E(W) is equivalent to maximizing likelihood of T .

13

Boltzmann machine – learning

Minimize E(~w) using gradient descent, i.e. compute a
sequence of weight matrices: W (0),W (1), . . .

I initialise W (0) randomly, close to 0
I in step t + 1 compute W (t+1) as follows:

W (t+1)
ji = W (t)

ji + ∆W (t)
ji

where

∆W (t)
ji = −ε(t) ·

∂E
∂wji

(W (t))

is the update of the weight wji in the step t + 1 and
0 < ε(t) ≤ 1 is the learning rate in the step t + 1.

It remains to compute ∂E
∂wji

(W).

14

Boltzmann machine – learning

For sufficiently large t ∗ (i.e. in thermal equilibrium) we have

∂E
∂wji

≈ −
1
T

(〈
y(t ∗)

j y(t ∗)
i

〉
fixed
−

〈
y(t ∗)

j y(t ∗)
i

〉
free

)
I

〈
y(t ∗)

j y(t ∗)
i

〉
fixed

is the expected value of y(t ∗)
j y(t ∗)

i in the
thermal equilibrium assuming that values of visible neurons
are fixed at the beginning of computation according to pd .

I
〈
y(t ∗)

j y(t ∗)
i

〉
free

is the expected value of y(t ∗)
j y(t ∗)

i in the
thermal equilibrium (no values fixed).

Thus

∆w(`)
ji = −ε(`) ·

∂E
∂wji

(W (`−1))

=
ε(`)

T

(〈
y(t ∗)

j y(t ∗)
i

〉
fixed
−

〈
y(t ∗)

j y(t ∗)
i

〉
free

)
15

Boltzmann machine – learning

Compute
〈
y(t ∗)

j y(t ∗)
i

〉
fixed

as follows:

I Let Y := 0 and do the following q times:

1. choose α ∈ {−1,1}|V | randomly according to pd ,
2. fix values of visible neurons to α and do not update them

throughout the remaining steps 3. and 4.,

3. simulate t ∗ steps, now the current values of neurons j and i
are y(t ∗)

j and y(t ∗)
i , respectively,

4. add y(t ∗)
j y(t ∗)

i to Y.

I For sufficiently large q, the value Y/q will be a good
estimate of

〈
y(t ∗)

j y(t ∗)
i

〉
fixed

.〈
y(t ∗)

j y(t ∗)
i

〉
free

can be estimated similarly, the only difference is
that the steps 1. and 2. are omitted.

16

Boltzmann machine – learning

For completeness, the analytic version:

〈
y(t ∗)

i y(t ∗)
j

〉
fixed

=

=
∑

α∈{−1,1}|V |
pd(α)

∑
β∈{−1,1}|S |

pN(α, β)

pV (α)
yαβj yαβi

here yαβj is the output of the neuron j in the state (α, β).

〈
y(t ∗)

i y(t ∗)
j

〉
free

=
∑

γ∈{−1,1}|N|
pN(γ)yγj yγi

17

