Hopfield network — local minima

We look for "deep" minima of E
We may get suck in a shallow minimum.

Solution: In every state we allow transition to states with higher
energy. This transition has a small probability (which will be higher at
the beginning and decrease throughout computation).

Boltzmann activity

Activity: States of neurons initially set to values of {-1, 1}, i.e.,
yj(o) el-1,1}forje1,...,n.

In the step t + 1 update value of a randomly chosen neuron
je{1,...,n} as follows: Compute the inner potential

n
&)=Y wy?
i=

choose yj(””) € {-1,1} randomly so that

Py =)= (e)
where
1
(&) = T

The parameter T(t) is called temperature in time t.

Temperature and energy

» High temperature T(t) implies that P[yj(t“) = 1] ~ % and thus
the network behaves almost randomly.

> Very low temperature T(t) implies that either P[y B = 1]~ 1

orP [y(t+1 1] ~ 0 depending on whether 5}” >0or cfjt) < 0.

Thus the network behaves almost deterministically (as in the

original activity of Hopfield network).

Notes:
» Boltzmann activity = Hopfield activity + random noise,

> energy E(Y) = -1 YL XLy wiiy;yi may jump to higher levels
(with probability depending on the temperature),

» the probability of transition to higher energy decreases
exponentially with the size of the "energy jump".

Simulated annealing

The following approach may help to reach deep minima of E:

» Start with higher temperature T(t)

» Gradually reduce the temperature, e.g. as follows:
» T(t)=n'- T(0) where n < 1 is close to 1
» or T(t) = T(0)/log(1+ 1)

» This process resembles annealing used in metallurgy that alters
the physical and sometimes chemical properties of a material to
increase its ductility and reduce its hardness.

» |t also extends physical motivation of Hopfield networks: magnet
orientation is now, in addition, influenced by thermal fluctuations.

... and it gets us close to Boltzmann machines.

Boltzmann machine

Architecture:

» Neural network with cycles and symmetric connections
(i.e. arbitrary graph)

» N is a set of all neurons.

» Denote by ¢; the inner potential and by y; the output (i.e.
state) of neuron j.
State of the machine: y € {—1,1}IM.

» Denote by wj; € R the weight of the connection from i to j
(and thus also from j to).

» No bias and assume wj; = 0 for all j € N.

Boltzmann machine

Activity: States of neurons initially set to values of {-1, 1}, i.e.
yj(o) €{-1,1}forjeN.

In the step t + 1 do the following:
» Choose a neuron j € N randomly with the uniform
probability.
» Compute the inner potential of j:
n
t t
5](= Z Wti,-()
i€j
» Choose yj(m) € {-1, 1} randomly so that
P [yj(“”) =1] = a(élm) where
£) = 1
(&) = T
(T(t) is a temperature at time t.)

Boltzmann machine

> High temperature T(t) implies that P[yj(t“) = 1] ~ } and
thus the machine behaves almost randomly.

> Low temperature T(t) means that either P[yj(“”) — 1] ~ 1

or P [yj(m) = 1] ~ 0 depending on whether E}t) >0 or

éj(t) < 0. Then the machine behaves almost
deterministically (as the Hopfield network).

Boltzmann machine represents probability

Goal: Construct a network representing a distribution on a set
of vectors {—1, 1}IM.

Rough idea: Boltzmann machine has states in {-1, 1}IM,
moves randomly from state to state during computation.

If we let the machine run for sufficiently long time (with a fixed
temperature), the relative frequencies of visits to states will be
independent of the initial state.

We consider these frequencies as probabilities of the states.
This gives a probability distribution on {—1, 1}/M represented by
the machine.

During learning, a probability distribution on states of {—1, 1}IN!
will be given, and we adapt weights so that the frequencies
match the given probabilities.

Equilibrium

Fix a temperature T (i.e. T(t)=Tfort=1,2,...).

Theorem
For every y* € {—1,1}N we have that

1 .
i J() — | = e EO/T
tll_r)goP[y _y]_Ze ’

where

_ 1
z=), e Ep)=-3) iy
ye{—1,1}IN ij

the Boltzmann distribution.

Define pn()*) := limi_ P [7(’) = y*] for every y* € {—1,1}IM.

Equilibrium probabilities

Note that
» py is a probability distribution on {—1, 1} represented by
the machine,
» for a state y*, we have that pn()*) is the probability of * in
the thermal equilibrium,

» pn(y*) can be estimated by P [7(“) = y*] for sufficiently
large t*
That is, in order to compute py(y*) it is sufficient to simulate a
computation several times for t* steps and then compute the relative
frequency of stopping in y*.

» By Markov chains theory, py(y*) is the long-run frequency
of visits to y".
This gives an alternative procedure for estimating py(y*): Execute the
machine for very long time, compute the relative frequency of visits to y*
along the computation.

Boltzmann machine - learning

To be able to capture more probability distributions, we
introduce hidden neurons.
Divide N into two disjoint sets:
» visible neurons V
» hidden neurons H
For a € {-1,1}V denote

pu@=), pn(ap)
Be{—1,1}1H

the probability that the state of visible neurons in the thermal
equilibrium is a.

Our goal is to adapt weights so that py corresponds to a given
probability distribution on {—1, 1}Vl

Boltzmann machine — learning

Learning:
Let pg be a probability distribution on the states of visible
neurons, i.e. on {—1, 1}IVl,

The distribution py can be determined by a sequence of training
examples:

T =X,X,...,%m
then
Pa(a) = #(a, T)/m

here #(a,7") is the number of occurrences of a in 7.

Our goal is to find a configuration of the network W such that
Pv = Pq.

Boltzmann machine - learning

A suitable measure of difference between probability
distributions py and py is relative entropy weighted by
probabilities of states (Kullback-Leibler divergence):

B Pa(a)
P Y

For p4 given by a training set 7~ = Xy, X>, ..., Xn we have that

minimizing &(W) is equivalent to maximizing likelihood of 7.

Boltzmann machine - learning

Minimize &(W) using gradient descent, i.e. compute a
sequence of weight matrices: W(©®, w(") .

» initialise W(® randomly, close to 0
» in step t + 1 compute W) as follows:

(t+1) _ () (t)
Wit = w0+ aw

where

O _ 1. 98
AW = (1) aw,-,-(W)

is the update of the weight wj; in the step t + 1 and
0 < ¢(t) < 1is the learning rate in the step t + 1.

It remains to compute ;—V‘Z(W).

Boltzmann machine - learning

For sufficiently large t* (i.e. in thermal equilibrium) we have

& 1) (F
Iw; T (<yj(t)yi(t)>ﬁxed <y()y,()>free)

<y(Iyt)> is the expected value of yj(t*)yi(t*) in the

thermal equnibrium assuming that values of visible neurons
are fixed at the beginning of computation according to py.
(y()y(’)> e is the expected value of yj(t*)y,.“*) in the
thermal equilibrium (no values fixed).

Thus

AwD = () 28 =1y

8w,,

4
N é() (<y y’ y)>flxed <y(t)y’(t)>free)

Boltzmann machine - learning

Compute <yj(t*)yl.(t*)

» Let Y := 0 and do the following q times:

> ~as follows:
fixed

1. choose a € {-1, 1}Vl randomly according to pg,

2. fix values of visible neurons to a and do not update them
throughout the remaining steps 3. and 4.,

3. simulate t* steps, now the current values of neurons jand i
are y].(t) and yl.(t), respectively,

4. add yj(f)y,-(t*) to Y.

» For sufficiently large g, the value Y/qg will be a good

estimate of < y].(t*) Y,-(t*)>f,-xed'

(yj(t*)y’.(’*)%ree can be estimated similarly, the only difference is
that the steps 1. and 2. are omitted.

Boltzmann machine — learning

For completeness, the analytic version:

(1), (1) _
<y y >fixed o
p a/ Q| Q|
2 pd N((af) y] ﬁyl f
ag(—1,1)V ﬁ eTays PV

here yfﬁ is the output of the neuron j in the state («, B).

<y(yl free Z PN

{—=1,1}INI

