
Restricted Boltzmann machine (RBM)

Architecture:
I Neural network with cycles and symmetric connections,

neurons divided into two disjoint sets:
I V - visible
I H - hidden

Connections: V × S (complete bipartite graph)
I N is a set of all neurons.
I Denote by ξj the inner potential and by yj the output (i.e.

state) of neuron j.
State of the machine: ~y ∈ {0,1}|N|.

I Denote by wji ∈ R the weight of the connection from i to j
(and thus also from j to i).

I Consider bias: wj0 is the weight between j and a neuron 0
whose value y0 is always 1.

1

RBM – activity

Activity: States of neurons initially set to values of {0,1}, i.e.
y(0)

j ∈ {0,1} for j ∈ N.

In the step t + 1 do the following:
I t even: randomly choose new values of all hidden neurons,

for every j ∈ H

P
[
y(t+1)

j = 1
]

= 1
/ 1 + exp

−wj0 −
∑
i∈V

wjiy
(t)
i

I t odd: randomly choose new values of all visible neurons,
for every j ∈ V

P
[
y(t+1)

j = 1
]

= 1
/ 1 + exp

−wj0 −
∑
i∈H

wjiy
(t)
i

2

Thermal equilibrium

Fix a temperature T (i.e. T(t) = T for t = 1,2, . . .).

Theorem
For every γ∗ ∈ {0,1}|N| we have that

lim
t→∞

P
[
~y(t) = γ∗

]
=

1
Z

e−E(γ∗)/T

where

Z =
∑

γ∈{0,1}|N|
e−E(γ)/T

and

E(γ) = −
∑

i∈V , j∈H

wjiy
γ
j yγi −

∑
i∈V

wi0yγi −
∑
j∈H

wj0yγj

Define pN(γ∗) := limt→∞ P
[
~y(t) = γ∗

]
for every γ∗ ∈ {0,1}|N|.

3

RBM – learning

Learning:
Let pd be a probability distribution on states of visible neurons,
i.e. on {0,1}|V |.

Our goal is to find a configuration of the network W such that
pV ≈ pd .

A suitable measure of difference between probability
distributions pV and pd is relative entropy weighted by
probabilities of states (Kullback-Leibler divergence):

E(W) =
∑

α∈{0,1}|V |
pd(α) ln

pd(α)

pV (α)

4

RBM – learning

Minimize E(~w) using gradient descent, i.e. compute a
sequence of weight matrices: W (0),W (1), . . .

I initialise W (0) randomly, close to 0
I in step t + 1 compute W (t+1) as follows:

W (t+1)
ji = W (t)

ji + ∆W (t)
ji

where

∆W (t)
ji = −ε(t) ·

∂E
∂wji

(W (t))

is the update of the weight wji in the step t + 1 and
0 < ε(t) ≤ 1 is the learning rate in the step t + 1.

It remains to compute ∂E
∂wji

(W).

5

RBM – learning

For sufficiently large t ∗ (i.e. in thermal equilibrium) we have

∂E
∂wji

≈ −
1
T

(〈
y(t ∗)

j y(t ∗)
i

〉
fixed
−

〈
y(t ∗)

j y(t ∗)
i

〉
free

)
I

〈
y(t ∗)

j y(t ∗)
i

〉
fixed

is the expected value of y(t ∗)
j y(t ∗)

i in the
thermal equilibrium assuming that values of visible neurons
are fixed at the beginning of computation according to pd .

I
〈
y(t ∗)

j y(t ∗)
i

〉
free

is the expected value of y(t ∗)
j y(t ∗)

i in the
thermal equilibrium (no values fixed).

Problem: Computation of
〈
y(t ∗)

j y(t ∗)
i

〉
free

takes long time.〈
y(t ∗)

j y(t ∗)
i

〉
free

can be estimated with
〈
yjyi

〉
recon

, the expectation

of y(3)
j y(3)

i when values of visible neurons chosen by pd .

6

RBM – learning

Thus

∆w(t)
ji = ε(t) ·

(〈
yjyi

〉
fixed
−

〈
yjyi

〉
recon

)
I Compute

〈
yjyi

〉
fixed

as follows: Let Y := 0 and repeat the
following q times:

I fix values of visible neurons randomly by pd
I simulate one step of computation, add yjyi to Y

For a suitable q we have that Y/q estimates
〈
yjyi

〉
fixed

well.

I Compute
〈
yjyi

〉
recon

as follows: Let Y := 0 and repeat q
times:

I choose initial values of visible neurons by pd
I simuate three steps, add yjyi to Y

(i.e. compute values of hidden neurons, then of visible ones
(reconstruction of the input) and then of hidden neurons)

For a suitable q we have that Y/q estimates
〈
yjyi

〉
recon

well.

7

Deep MLP

Input

Hidden

Output

x1 x2

y1 y2
I Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

I layers numbered from 0; the
input layer has number 0

I E.g. three-layer network has
two hidden layers and one
output layer

I Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

I Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

8

Deep MLP

I Denote
I X a set of input neurons
I Y a set of output neurons
I Z a set of all neurons (X ,Y ⊆ Z)

I individual neurons denoted by indices i, j etc.
I ξj is the inner potential of the neuron j after the computation

stops
I yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)

I wji is the weight of the connection from i to j
(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

I j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

I j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

9

Deep MLP – activity

I inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

I activation function σj for neuron j (arbitrary differentiable):

yj = σj(ξj)

A deep MLP is evaluated layer-wise, for each j ∈ Y we have that
yj(~w, ~x) is the value of the output neuron j after evaluating the
network with weights ~w and input ~x.

10

Deep MLP – learning

I Given a training set T of the form{ (
~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}

Here, every ~xk ∈ R
|X | is an input vector end every ~dk ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input ~xk (the vector ~dk can be written as

(
dkj

)
j∈Y

).

I Error function – mean square error (for example):

E(~w) =
1
p

p∑
k=1

Ek (~w)

where

Ek (~w) =
1
2

∑
j∈Y

(
yj(~w, ~xk) − dkj

)2

Other errors such as cross-entropy possible.
11

Convolutional networks – SGD

The algorithm computes a sequence of weight vectors
~w(0), ~w(1), ~w(2),
I weights in ~w(0) are randomly initialized to values close to 0
I in the step t + 1 (here t = 0,1,2 . . .), weights ~w(t+1) are

computed as follows:
I Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
I Compute

~w(t+1) = ~w(t) + ∆~w(t)

where

∆~w(t) = −ε(t) ·
1
|T |

∑
k∈T

∇Ek (~w(t))

Here T is a minibatch (of a fixed size),
I 0 < ε(t) ≤ 1 is a learning rate in step t + 1
I ∇Ek (~w(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented
by randomly shuffling all data and then choosing minibatches
sequentially. Epoch consists of one round through all data. 12

Why deep networks

... if one hidden layer is able to represent an arbitrary (reasonable)
function?

I One hidden layer may be very inefficient, i.e. huge amount of
neurons may be needed. One can show that

I the number of hidden neurons may be exponential w.r.t. the
dimension of the input,

I networks with multiple layers may be exponentially more
succinct as opposed to single hidden layer.

... ok, so let’s try to teach deep networks ... using backpropagation?

Problems:

I Gradient may vanish/explode when backpropagated through
many layers.

I Deep networks (with many neurons) overfit very easily.

13

Deep MLP - vanishing gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds
∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z r X holds
∂Ek

∂yj
= yj − dkj pro j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj pro j ∈ Z r (Y ∪ X)

σ′r (ξr) · wrj is less than one for standard logistic sigmoid and
weights initialized close to 0.

14

Deep MLP – pretraining

Assume k layers. Denote

I Wi the weight matrix between layers i − 1 and i

I Fi function computed by the "lower" part of the MLP consisting of
layers 0,1, . . . , i
F1 is a function which consists of the input and the first hidden layer
(which is now considered as the output layer).

Crucial observation: For every i, the layers i − 1 and i together with
the matrix Wi can be considered as a RBM (assume T = 1).

Denote such a RBM as Bi .

15

Deep MLP – pretraining

For now, consider only input vectors ~x1, . . . , ~xp where ~xk ∈ {0,1}n for
all k = 1, . . . ,p.

I unsupervised pretraining: Gradually, for every i = 1, . . . , k ,
train RBM Bi on randomly selected inputs from the training set:

Fi−1(~x1), . . . ,Fi−1(~xp)

using the training algorithm for RBM (here F0(~xi) = ~xi).
(Thus Bi learns from training samples transformed by the already
pretrained layers 0, . . . , i − 1)

We obtain a deep belief network D representing a distribution given
by ~x1, . . . , ~xp .
(Recall that in such a distribution the probability of a given ~x is equal to
the relative frequency of ~x in ~x1, . . . , ~xp .)

16

Deep belief network
The network D can be used to sample from the distribution as
follows:
I Simulate the topmost RBM for some steps (ideally to thermal

equilibrium), this gives values of neurons in the two topmost
layers.

I Propagate the values downwards by always simulating one step
of the corresponding RBM. That is,

I you have already computed values of neurons in layers k
and k − 1.

I To compute values of neurons in the layer k − 2, simulate
one step of RBM Bk−1, that is sample values of neurons in
the layer k − 2 using RBM dynamics of Bk−1 with values of
the layer k − 1 fixed.

I Similarly, compute values of k − 3 by simulating Bk−2 ... etc.
I ... finally obtain values of input neurons.

I Probability with which a concrete input ~x is sampled by the
above procedure is the probability of ~x in the distribution
represented by D.

17

Deep MLP – training with pretraining
Now consider supervised learning with a training set:
T =

{ (
~xk , ~dk

) ∣∣∣ k = 1, . . . ,p
}
.

Still assume that ~xk ∈ {0,1}n.

I unsupervised pretraining: Gradually, for every i = 1, . . . , k ,
train RBM Bi on randomly selected inputs from the training set:

Fi−1(~x1), . . . ,Fi−1(~xp)

using the training algorithm for RBM (here F0(~xi) = ~xi).
(Thus Bi learns from training samples transformed by the already
pretrained layers 0, . . . , i − 1)

Obtain D.
I Add one (or more) layer to the top of D and consider the result

to be MLP.
(i.e. forget the RBM dynamics and start considering the network as
MLP with sigmoidal activations).

I supervised fine-tuning: Train in supervised mode (on the
training set T) using e.g. gradient descent + backprop.

18

Application – dimensionality reduction

I Dimensionality reduction: A mapping R from Rn to Rm

where
I m < n,
I for every example ~x we have that ~x can be "reconstructed"

from R(~x).
I Standard method: PCA (there are many linear as well as

non-linear variants)

19

Reconstruction – PCA

1024 pixels compressed to 100 dimensions (i.e. 100 numbers).

20

Autoencoders

Dimensionality reduction using MLP.

I Consider MLP n −m − n where m << n.
I The same vector on the input as well as output.
I Dimensionality reduction:

I Encoding: Compute values of hidden neurons.
I Reconstruction: Compute values of output neurons given

values of hidden neurons.

Can also be used for compression (in communication).

One can show that if linear neurons are used, the method
implements PCA.

21

Autoencoder – historical implementation

Architecture: MLP 64 − 16 − 64

Activity: activation function: hyperbolic tangens with limits −1
and 1

Learning:
Data:
I Images 256 × 256, 8 bits per pixel.
I Samples: input and output is a frame 8 × 8, randomly

selected in the image.
I Inputs normalized to [−1,1].

Learning:
I Backpropagation
I Learning rate: 0.01 for hidden, 0.1 pro output
I trained in 50 000 - 100 000 iterations

The goal was to compress images to smaller data size.
22

Dimensionality reduction – compression

A frame 8 × 8 passes through the
image 256 × 256 (no overlap)

(A) original

(B) compression

(C) compression + rounding to 6
bits (1.5 bit per pixel)

(D) compression + rounding to 4
bits (1 bit per pixel)

23

Dimensionality reduction – compression

New image (trained on the previous
one):

(A) original

(B) compression

(C) compression + rounding to 6
bits (1.5 bit per pixel)

(D) compression + rounding to 4
bits (1 bit per pixel)

24

Deep MLP – dimensionality reduction

Hinton, G. E., Osindero, S. and Teh, Y. (2006)
A fast learning algorithm for deep belief nets.
Neural Computation, 18, pp 1527-1554.

Hinton, G. E. and Salakhutdinov, R. R. (2006)
Reducing the dimensionality of data with neural networks.
Science, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006.

This basically started all the deep learning craze ...

25

Deep MLP – dimensionality reduction

26

Images – pretraining

I Data: 165 600 black-white images, 25 × 25, mean intensity
0, variance 1.
Images obtained from Olivetti Faces database of images 64 × 64 using
standard transformations.

I 103 500 training set, 20 700 validation, 41 400 test
I Network: 2000-100-500-30, training using layered RBM.

Notes:
Training of the lowest layer (2000 neurons): Values of pixels distorted
using Gaussian noise, low learning rate: 0.001, 200 iterations
Training all hidden layers: Values of neurons are binary.

Training of output layer: Values computed directly using the sigmoid
activation functions + noise. That is, values of output neurons are
from the interval [0,1].

27

Images – fine-tuning

I Stochastic activation substituted with deterministic.
That is the value of hidden neurons is not chosen randomly but directly
computed by application of sigmoid on the inner potential (this gives the
mean activation).

I Backpropagation.
I Error function: cross-entropy

−

∑
i

pi ln p̂i −
∑

i

(1 − pi) ln(1 − p̂i)

here pi is the intensity of i-th pixel of the input and p̂i of
the reconstruction.

28

Results

1. Original
2. Reconstruction using deep networks (reduction to 30-dim)
3. Reconstruction using PCA (reduction to 30-dim)

29

