Lesson 10 – Physically-based rendering PV227 – GPU Rendering

Jiří Chmelík, Jan Čejka Fakulta informatiky Masarykovy univerzity

21. 11. 2016

Physically-based rendering (PBR)

- Think about the physics behind everything:
 - ▶ Light
 - ► Lights
 - Materials
 - ► Sensors / Eyes
- In practice, still approximations
- More and more popular in real-time rendering, in rendering engines

Light propagation – Homogeneous media

- Light interacts with the material it travels through
- In homogeneous materials, the light is absorbed
 - ► Loses some of its energy
 - ► Clean water, glass, air, oil, ...

Low Absorbtion

High Absorbtion

Light propagation – Heterogeneous media

- Light interacts with the material it travels through
- In heterogeneous materials, the light is scattered
 - Scatters the energy without losses
 - ► Milk, skin, wood, (dirty water, air with fog), ...

Low Scattering

High Scattering

Light propagation – Absorbtion vs. Scattering

Absorbtion vs. Scattering

Light interaction – Materials

- Light changes its direction at the boundary between two materials
 - Reflection
 - Refraction
 - ► Without losses of energy

Reflection

- Perfect reflection: $\theta_i = \theta_o$
- Amount of reflected light depends on θ_i and on the wavelength
- Described by Fresnel equations

Fresnel reflection

- Depends on the wavelength, reflection has a color (!)
- Metals have usually higher values
- Dielectrics have usually lower values
- Mostly without any change until 50°, then goes straight to one
- In practice: Schlick's approximation:

$$F_{Schlick}(F_0, L, N) = F_0 + (1 - F_0)(1 - L \cdot N)^5$$

where F_0 is Fresnel reflection at 0° , L is direction to light, N is surface normal

Fresnel reflection at 0°

Material	$F(0^{\circ})$ (Linear)	$F(0^{\circ})$ (sRGB)	Color
Water	0.02,0.02,0.02	0.15,0.15,0.15	
Plastic / Glass (Low)	0.03,0.03,0.03	0.21,0.21,0.21	
Plastic High	0.05,0.05,0.05	0.24,0.24,0.24	
Glass (High) / Ruby	0.08,0.08,0.08	0.31,0.31,0.31	
Diamond	0.17,0.17,0.17	0.45,0.45,0.45	
Iron	0.56,0.57,0.58	0.77,0.78,0.78	
Copper	0.95,0.64,0.54	0.98,0.82,0.76	
Gold	1.00,0.71,0.29	1.00,0.86,0.57	
Aluminum	0.91,0.92,0.92	0.96,0.96,0.97	
Silver	0.95,0.93,0.88	0.98,0.97,0.95	

Fresnel reflections at 0° for some materials

Refraction

Snell's law

$$\frac{\sin \theta_i}{\sin \theta_t} = \frac{v_1}{v_2}$$

- In metals, all energy is absorbed
- In homogeneous materials, the light continues in different direction
- In heterogeneous materials (including skin, wood, plastic, ...), the light is scattered and absorbed

Refraction – diffuse light

- Diffuse lighting
 - ► When all the (non-absorbed) light exits the surface at approximately the same point as the light enters.

Refraction – sub-surface scattering

- Sub-surface scattering (SSS)
 - ► When all the (non-absorbed) light exits the surface at different places.

Ambient lighting?

- "Does not exist in PBR"
- Average of lighting coming from all directions.

Microfacets

- Only some objects are flat (mirrors, water surface, ...), others are not
- With microfacets, the surface is represented with very small facets
 - Smaller then 'pixel', not for displacement in geometry, not for normal mapping
 - (Larger than light's wavelength)
 - ► Each mifrofacet is a flat surface
- Many microfacets models, for different materials
 - ► Different distribution of orientation of facets
 - ► Different shadowing between facets
 - Different approximation of the model

Microfacets

Top: smooth surface, Bottom: rough surface

Distribution of microfacets

- We are usually interested in facets which are oriented in the proper direction to give us perfect reflection.
 - ▶ i.e. facets that are oriented in the half-vector direction
- Gaussian distribution, ...

Geometrical attenuation

- Shadowing: Facets occlude the light for other facets
- Masking: Facets cannot be seen due to other facets
- Interreflection: Facets reflect the light to other facets, and then the light is reflected to the viewer

- Cook-Torrance (1982)
- Oren-Nayar (1994)
- Ashikhmin-Shirley (2000)
- Normalized Blinn-Phong (2008)

Legend to the following equations

- \vec{N} , \vec{T} , \vec{B} are surface normal, tangent, and bitangent
- \vec{L} is direction to the light, \vec{V} is direction to the viewer
- ullet is half-vector, vector between the light and the viewer
- All dot products are non-negative, e.g.: $\max(0, \vec{N} \cdot \vec{L})$
- All vectors are normalized
- All results must be multiplied by light's intensity and color
- Fresnel($\vec{V} \cdot \vec{H}$) = $F_0 + (1 F_0)(1 \vec{V} \cdot \vec{H})^5$

Cook-Torrance

- Useful for most surfaces, metals,
- All microfacets are perfect mirrors
- Single parameter m (roughness), usually in range (0, 1)

Cook-Torrance cont.

Diffuse:

$$I_{diff} = Color_{diff} \cdot (\vec{N} \cdot \vec{L})$$

Specular:

$$I_{spe} = rac{F \cdot G \cdot D}{4 \cdot (ec{N} \cdot ec{V})}$$

where

- ▶ Fresnel $F = Fresnel(\vec{V} \cdot \vec{H})$
- ► Geom. atten. $G = min(1, \frac{2 \cdot (\vec{N} \cdot \vec{H}) \cdot (\vec{N} \cdot \vec{V})}{(\vec{V} \cdot \vec{H})}, \frac{2 \cdot (\vec{N} \cdot \vec{H}) \cdot (\vec{N} \cdot \vec{L})}{(\vec{V} \cdot \vec{H})})$
- ► Beckmann distribution $D = \frac{e^{\frac{(\vec{N} \cdot \vec{H})^2 1}{m^2 \cdot (\vec{N} \cdot \vec{H})^2}}}{e^{2} \cdot (\vec{N} \cdot \vec{H})^4}$ ► (*m* is roughness)
- ► (m is roughness of the material)
- Diffuse is energy-conserving, specular is energy-conserving, but not together

Oren-Nayar

- For non-shiny objects like concrete, flowerpots, bricks, Moon
- All microfacets are Lambertian (diffuse) surfaces
- No specular highlights
- Retroreflections at boundaries
- Single parameter m (roughness)

Oren-Nayar cont.

Diffuse:

$$I_{diff} = Color_{diff} \cdot (\vec{N} \cdot \vec{L}) \cdot (A + B \cdot \max(0, \cos(\phi)) \cdot C)$$

where

- $\theta_i = \arccos(\vec{N} \cdot \vec{L})$
- $\theta_o = \arccos(\vec{N} \cdot \vec{V})$
- $\alpha = \max(\theta_i, \theta_o)$
- $\rightarrow \beta = min(\theta_i, \theta_o)$
- $\blacktriangleright \ \cos(\phi) = norm\left(\vec{V} \vec{N} \cdot (\vec{V} \cdot \vec{N})\right) \cdot norm\left(\vec{L} \vec{N} \cdot (\vec{L} \cdot \vec{N})\right)$
- ► $A = 1.0 0.5 \cdot \frac{m^2}{m^2 + 0.57}$
- ► $B = 0.45 \cdot \frac{m^2}{m^2 + 0.09}$
- $ightharpoonup C = \sin(\alpha) \cdot \tan(\beta)$
- Diffuse is energy-conserving

Ashikhmin-Shirley

- For brushed objects (metal) with anisotropic reflections
- All microfacets are perfect mirrors
- Two parameters shin_T, shin_B: shininess exponents in tangent and bitangent directions, usually greater than 1

Ashikhmin-Shirley cont.

Diffuse (not energy-conserving with specular):

$$I_{diff} = Color_{diff} \cdot (\vec{N} \cdot \vec{L})$$

or diffuse (energy-conserving with specular):

$$\begin{split} I_{diff} = & \textit{Color}_{diff} \cdot (\vec{N} \cdot \vec{L}) \cdot \\ & \cdot \frac{28}{23} (1 - F_0) \left(1 - \left(1 - \frac{(\vec{N} \cdot \vec{L})}{2} \right)^5 \right) \left(1 - \left(1 - \frac{(\vec{N} \cdot \vec{V})}{2} \right)^5 \right) \end{split}$$

where

► F₀ is Fresnel reflection at 0°

Ashikhmin-Shirley cont.

Specular:

$$\begin{split} I_{spe} = & Fresnel(\vec{V} \cdot \vec{H}) \cdot (\vec{N} \cdot \vec{L}) \cdot \\ & \cdot \frac{\sqrt{(shin_T + 1)(shin_B + 1)}}{8} \cdot \frac{(\vec{N} \cdot \vec{H})^{\frac{shin_T \cdot (\vec{T} \cdot \vec{H})^2 + shin_T \cdot (\vec{B} \cdot \vec{H})^2}{1 - (\vec{N} \cdot \vec{H})^2}}{(\vec{V} \cdot \vec{H}) \cdot \max((\vec{N} \cdot \vec{L}), (\vec{N} \cdot \vec{V}))} \end{split}$$

Normalized Blinn-Phong

- Improvement of the original Blinn-Phong (1977)
- Specular is energy conserving, without creating or losing energy
- Diffuse is the same

$$I_{diff} = Color_{diff} \cdot (\vec{N} \cdot \vec{L})$$

Original specular

$$I_{spe} = (\vec{N} \cdot \vec{L}) \cdot Color_{spe} \cdot (\vec{N} \cdot \vec{H})^{shin}$$

Normalized specular

$$I_{spe} = (\vec{N} \cdot \vec{L}) \cdot Color_{spe} \cdot rac{shin + 8}{8} (\vec{N} \cdot \vec{H})^{shin}$$

where shin is shininess exponent

Normalized Blinn-Phong cont.

Original Blinn-Phong, Color_{spe} = 120/255

- Task 1: Implement Normalized Blinn-Phong
 - ► Fragment shader BlinnPhongNormalized_fragment.glsl
 - Parameters in variables:
 - ★ Color_{diff} in material diffuse
 - ★ Color_{spe} in material specular
 - ★ shin in material shininess
 - Compare with the original Blinn-Phong

- Task 2: Implement Cook-Torrance
 - ► Fragment shader CookTorrance_fragment.glsl
 - Parameters in variables:
 - ★ Color_{diff} in material diffuse
 - ★ F₀ in material fresnel
 - ★ m in material_roughness
 - Notice the highlight when looking from near surface angles
 - Comparative with Blinn-Phong. To get approx. the same result:
 - ★ Set Specular color and Fresnel color to the same value
 - ★ Set roughness = $\sqrt{\frac{2}{2+shininess}}$

- Task 3: Implement Oren-Nayar
 - ► Fragment shader *OrenNayar_fragment.glsl*
 - Parameters in variables:
 - ★ Color_{diff} in material diffuse
 - ★ m in material_roughness
 - ► Set *roughness* to 0.5 and compare with Blinn-Phong with black *specular*

- Task 4: Implement Ashikhmin-Shirley
 - Fragment shader AshikhminShirley_fragment.glsl
 - Parameters in variables:
 - ★ Color_{diff} in material diffuse
 - ★ F₀ in material fresnel
 - ★ shin_T in material_shininess_tangent
 - ★ shin_B in material shininess bitangent
 - ► Test on cylinder or teapot, set different shininess in tangent and bitangent directions (e.g. 20 and 500)
 - When using simple computation for diffuse color, and setting shininess to the same values, the result should be compatible with Blinn-Phong.

Further reading

SIGGRAPH cources on PBR:

- http://renderwonk.com/publications/ s2010-shading-course/
- http://blog.selfshadow.com/publications/ s2012-shading-course/
- http://blog.selfshadow.com/publications/ s2013-shading-course/
- http://blog.selfshadow.com/publications/ s2014-shading-course/
- http://blog.selfshadow.com/publications/ s2015-shading-course/
- http://blog.selfshadow.com/publications/ s2016-shading-course/

Further reading

- Cook, R., Torrance, K.: A Reflectance Model for Computer Graphics
- Oren, M., Nayar, S.: Generalization of Lambert's Reflectance Model
- Ashikhmin, M., Shirley, P.: An Anisotropic Phong BRDF Model
- Akenine-Möller, T., et al.: Real-Time Rendering
- Pharr, M., et al.: Physically Based Rendering, From Theory to Practice