Lesson 10 — Physically-based rendering
PVv227 — GPU Rendering

Jiti Chmelik, Jan Cejka
Fakulta informatiky Masarykovy univerzity

21.11. 2016

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 1/34

Physically-based rendering (PBR)

o Think about the physics behind everything:
Light

Lights

Materials

Sensors / Eyes

@ In practice, still approximations

@ More and more popular in real-time rendering, in rendering
engines

v

vvVvYyy

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 2/34

Light propagation — Homogeneous media

o Light interacts with the material it travels through
@ In homogeneous materials, the light is absorbed

» Loses some of its energy
» Clean water, glass, air, oil, ...

Low Absorbtion High Absorbtion

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 3/34

Light propagation — Heterogeneous media

o Light interacts with the material it travels through
@ In heterogeneous materials, the light is scattered

» Scatters the energy without losses
» Milk, skin, wood, (dirty water, air with fog), . ..

Low Scattering High Scattering

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016

4/34

Light propagation — Absorbtion vs. Scattering

Absorption

Scattering
Absorbtion vs. Scattering

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 5/34

Light interaction — Materials

o Light changes its direction at the boundary between two materials
» Reflection
» Refraction
» Without losses of energy

0;

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 6/34

Reflection

o Perfect reflection: 6; = 0,
@ Amount of reflected light depends on ¢; and on the wavelength
o Described by Fresnel equations

Rr

1 T T T

0.9 F

08

07k

T "
0 10 20 30 40 50 60 70 80 90
angle of incidence 6;

‘ == copper == aluminum - iron diamond == glass == water

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016

7/34

Fresnel reflection

Depends on the wavelength, reflection has a color (!)

Metals have usually higher values

Dielectrics have usually lower values

Mostly without any change until 50°, then goes straight to one
In practice: Schlick’s approximation:

© ©6 0 0 o

Fseniick(Fo, L, N) = Fo + (1 — Fo)(1 — L- N)®

where Fy is Fresnel reflection at 0°, L is direction to light, N is
surface normal

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 8/34

Fresnel reflection at 0°

Material F(0°) (Linear) | F(0°) (sRGB) | Color

Water 0.02,0.02.002 | 015015015 | | N AR
Plastic / Glass (Low) | 0.03,0.03,0.03 | 021,021,021 | [[l
Plastic High 0.05,005,005 | 024024024 | | NRNRRH
Glass (High) / Ruby | 0.08,0.08,0.08 | 0.31,0.31,031 | [AR
Diamond 0.17,0.17,0.17 5045 | NG
Iron 0.56,0.57,0.58 78,078 |]
Copper 0.95,0.64,0.54 098,082,076 |]
Gold 1.00,0.71,0.29 1.00,0.86,057 | []
Aluminum 0.91,0.92,0.92 0.96,0.96,0.97 | | |
Silver 0.95.0.93.0.88 098,097,095 |]

Fresnel reflections at 0° for some materials

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 9/34

Refraction

o Snell’s law

sin 6, W
sin 6; Vo

o In metals, all energy is absorbed
@ In homogeneous materials, the light continues in different direction

o In heterogeneous materials (including skin, wood, plastic, .. .), the
light is scattered and absorbed

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 10/34

o Diffuse lighting

» When all the (non-absorbed) light exits the surface at approximately
the same point as the light enters.

—

o Sub-surface scattering (SSS)

» When all the (non-absorbed) light exits the surface at different
places.

Ambient lighting?

o “Does not exist in PBR”
@ Average of lighting coming from all directions.

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 13/34

Microfacets

@ Only some objects are flat (mirrors, water surface, ...), others are
not
@ With microfacets, the surface is represented with very small facets

» Smaller then ‘pixel’, not for displacement in geometry, not for
normal mapping

» (Larger than light’s wavelength)

» Each mifrofacet is a flat surface

@ Many microfacets models, for different materials

» Different distribution of orientation of facets
» Different shadowing between facets
» Different approximation of the model

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 14 /34

Microfacets

Top: smooth surface, Bottom: rough surface

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 15/34

Distribution of microfacets

o We are usually interested in facets which are oriented in the
proper direction to give us perfect reflection.

» i.e. facets that are oriented in the half-vector direction
o Gaussian distribution, ...

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 16/34

Geometrical attenuation

@ Shadowing: Facets occlude the light for other facets
o Masking: Facets cannot be seen due to other facets

o Interreflection: Facets reflect the light to other facets, and then the
light is reflected to the viewer

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 17 /34

Task: Implement microfacets models

o Cook-Torrance (1982)

@ Oren-Nayar (1994)

@ Ashikhmin-Shirley (2000)

@ Normalized Blinn-Phong (2008)

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 18/34

Legend to the following equations

N, T, B are surface normal, tangent, and bitangent

L is direction to the light, V is direction to the viewer

H is half-vector, vector between the light and the viewer
All dot products are non-negative, e.g.: max(0, N - L)

All vectors are normalized

All results must be multiplied by light’s intensity and color
Fresnel(V - H) = Fo+ (1 — Fp)(1 — V- H)®

© 06 06 06 06 0 o

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 19/34

Cook-Torrance

o Useful for most surfaces, metals,
o All microfacets are perfect mirrors
o Single parameter m (roughness), usually in range (0, 1)

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 20/34

Cook-Torrance cont.

o Diffuse:
lair = Colorgiss - (N - L)
@ Specular:
. _FGD
PET 4NV
where
» Fresnel F = Fresnel(V - H)
i 2.(N-H)-(N-V) 2-(N-A)-(N-L)
» Geom. atten. G = min(1, T h)
(WAt
» Beckmann distribution D = &7-&"

m2~(KI~I_-7)4
» (mis roughness of the material)

o Diffuse is energy-conserving, specular is energy-conserving, but
not together

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 21/34

Oren-Nayar

o For non-shiny objects like concrete, flowerpots, bricks, Moon
o All microfacets are Lambertian (diffuse) surfaces

@ No specular highlights

o Retroreflections at boundaries

@ Single parameter m (roughness)

_—— e

(a) Image (b) Lambertian (¢) Model

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 22/34

Oren-Nayar cont.

o Diffuse:
lgitr = Colorgis - (N - L) - (A+ B-max(0,cos(¢)) - C)

where
» 0; = arccos(N - L)
» 0, = arccos(N - V)
» a=max(0;,60,)
» 5= min(0;,0,)
» COs(¢) = norm(\7— N.-(V- N)) -norm (Z— N-(L- K/))
> A=10-05 7
> B=045 M

C = sin(a) - tan(pB)
o Diffuse is energy-conserving

v

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 23/34

Ashikhmin-Shirley

o For brushed objects (metal) with anisotropic reflections
o All microfacets are perfect mirrors

o Two parameters shinr, shing: shininess exponents in tangent and
bitangent directions, usually greater than 1

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 24/34

Ashikhmin-Shirley cont.

o Diffuse (not energy-conserving with specular):
lifr = Colorgg - (N - L)
o or diffuse (energy-conserving with specular):

—

litr =Colorgis - (N - L) -
- L L \5
1—Fo (1 —NL)>) (1(1(N'V)>)
2
where

» Fy is Fresnel reflection at 0°

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 25/34

Ashikhmin-Shirley cont.

o Specular:

lspe =Fresnel(V - H) - (N - L) -

~+/(shint +1)(shing +1) ~ (

8 (\7

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 26/34

Normalized Blinn-Phong

@ Improvement of the original Blinn-Phong (1977)
@ Specular is energy conserving, without creating or losing energy
o Diffuse is the same

lir = Colorgg - (N - L)
@ Original specular
Ispe = (N - L) - Colorspe - (N - H)s™
@ Normalized specular

shin+ 8

N/ . \shin
L (N A)

Ispe = (N - L) - Colorspe -
where shin is shininess exponent

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 27/34

Normalized Blinn-Phong cont.

@ Original Blinn-Phong, Colorspe = 120/255

shin = 25 shin = 50 shin =175 shin =100
@ Normalized Blinn-Phong, Colorspe = 32/255

shin = 25 shin = 50 shin =75 shin =100

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 28/34

Task: Implement microfacets models

o Task 1: Implement Normalized Blinn-Phong

» Fragment shader BlinnPhongNormalized_fragment.gls/
» Parameters in variables:

* Colorgy in material_diffuse
* Colorspe in material_specular
* shin in material_shininess

» Compare with the original Blinn-Phong

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 29/34

Task: Implement microfacets models

o Task 2: Implement Cook-Torrance

» Fragment shader CookTorrance_fragment.gls!
» Parameters in variables:

* Colorys in material _diffuse
* Fq in material_fresnel
* min material_roughness

» Notice the highlight when looking from near surface angles
» Comparative with Blinn-Phong. To get approx. the same result:

* Set Specular color and Fresnel color to the same value

* Set roughness = \/%

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 30/34

Task: Implement microfacets models

o Task 3: Implement Oren-Nayar

» Fragment shader OrenNayar_fragment.gls|
» Parameters in variables:

* Colorgy in material_diffuse
* min material_roughness

» Set roughness to 0.5 and compare with Blinn-Phong with black
specular

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 31/34

Task: Implement microfacets models

o Task 4: Implement Ashikhmin-Shirley
» Fragment shader AshikhminShirley fragment.gls/
» Parameters in variables:
* Colorgy in material_diffuse
* Fy in material_fresnel
* shinr in material_shininess_tangent
* shing in material_shininess_bitangent
» Test on cylinder or teapot, set different shininess in tangent and
bitangent directions (e.g. 20 and 500)
» When using simple computation for diffuse color, and setting
shininess to the same values, the result should be compatible with
Blinn-Phong.

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 32/34

Further reading

o SIGGRAPH cources on PBR:

>

PV227 — GPU Rendering (FI MUNI)

http://renderwonk.com/publications/

s2010-shading-course/

http://blog.selfshadow.

s2012-shading—-course/

http://blog.selfshadow.

s2013-shading-course/

http://blog.selfshadow.

s2014-shading-course/

http://blog.selfshadow.

s2015-shading-course/

http://blog.selfshadow.

s2016-shading-course/

Lesson 10 —

com/publications/
com/publications/
com/publications/
com/publications/

com/publications/

PBR 21.11. 2016 33/34

http://renderwonk.com/publications/s2010-shading-course/
http://renderwonk.com/publications/s2010-shading-course/
http://blog.selfshadow.com/publications/s2012-shading-course/
http://blog.selfshadow.com/publications/s2012-shading-course/
http://blog.selfshadow.com/publications/s2013-shading-course/
http://blog.selfshadow.com/publications/s2013-shading-course/
http://blog.selfshadow.com/publications/s2014-shading-course/
http://blog.selfshadow.com/publications/s2014-shading-course/
http://blog.selfshadow.com/publications/s2015-shading-course/
http://blog.selfshadow.com/publications/s2015-shading-course/
http://blog.selfshadow.com/publications/s2016-shading-course/
http://blog.selfshadow.com/publications/s2016-shading-course/

Further reading

o Cook, R., Torrance, K.: A Reflectance Model for Computer
Graphics

@ Oren, M., Nayar, S.: Generalization of Lambert’s Reflectance
Model

@ Ashikhmin, M., Shirley, P.: An Anisotropic Phong BRDF Model
o Akenine-Mdller, T., et al.: Real-Time Rendering

o Pharr, M., et al.: Physically Based Rendering, From Theory to
Practice

PV227 — GPU Rendering (FI MUNI) Lesson 10 — PBR 21.11. 2016 34/34

