Designing Sketches for Similarity Filtering

Vladimir Mic David Novak Pavel Zezula

Faculty of Informatics Masaryk University Brno, Czech Republic

December 12, 2016

Vladimir Mic, David Novak, Pavel Zezula Designing Sketches for Similarity Filtering

Motivation

- Handling objects according to their pairwise similarity closely corresponds to the human perception of reality:
 - \bullet example: little children use similarity relations as a predominant basis for classification 1

¹D. G. Kemler, "Classification in young and retarded children: The primacy of overall similarity relations," 1982

Motivation

- Handling objects according to their pairwise similarity closely corresponds to the human perception of reality:
 - example: little children use similarity relations as a predominant basis for classification ¹
- Similarity of objects
 - example of objects: images, plots, time series, fingerprints, motions, sounds, music . . .
 - similarity: visual (in general), similarity of shapes, colours, subsequences, subfigures

¹D. G. Kemler, "Classification in young and retarded children: The primacy of overall similarity relations," 1982

Motivation

- Handling objects according to their pairwise similarity closely corresponds to the human perception of reality:
 - example: little children use similarity relations as a predominant basis for classification $^{\rm 1}$
- Similarity of objects
 - example of objects: images, plots, time series, fingerprints, motions, sounds, music . . .
 - similarity: visual (in general), similarity of shapes, colours, subsequences, subfigures
- Similarity search, query by example
 - Find most similar objects to given query object q in (big) dataset X
 - Goal: do it quickly, possibly in a real time
 - Common approach: provide an approximate answer

¹D. G. Kemler, "Classification in young and retarded children: The primacy of overall similarity relations," 1982

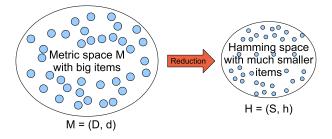
- Similarity search is usually performed on characteristic features extracted from objects
- Domain of these features is D
- Similarity of two objects is described by similarity function
 - we use an opposite approach: a *distance function d* which measures dissimilarity of objects
 - The bigger the value d(x, y) is, the less similar objects x, y are

- Similarity search is usually performed on characteristic features extracted from objects
- Domain of these features is D
- Similarity of two objects is described by similarity function
 - we use an opposite approach: a *distance function d* which measures dissimilarity of objects
 - The bigger the value d(x, y) is, the less similar objects x, y are
- Similarity model: the Metric space (D, d) $\forall x, y, z \in D$:
 - $d(x, y) \ge 0$ • d(x, y) = d(y, x)
 - $d(x, y) = 0 \iff x = y$ • d(x, y) + d(y, z) > d(x, z)

(non-negativity) (symmetry) (identity) (triangle inequality)

Our Approach – Instance of Dimensionality Reduction

Dimensionality reduction of the Metric space to Hamming space:



- *M*: general Metric space
- S: domain of bit-strings of length λ
- h: Hamming distance = the number of different bits in two bit strings

- Bit-string sk(o) created for object $o \in D$ is called sketch of object o Sk(o): 1 0 1 1 0 0 0 0
- Goal: create short sketches well reflecting spatial relationships between objects in the Metric space *M*

• Bit-string sk(o) created for object $o \in D$ is called sketch of object o

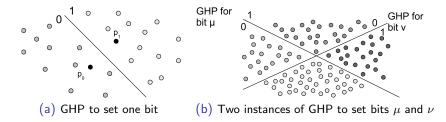
$$Sk(o)$$
: 1 0 1 1 0 0 0 0

- Goal: create short sketches well reflecting spatial relationships between objects in the Metric space *M*
 - well approximate object ordering with respect to an arbitrary query $q: d(q, o_1) < d(q, o_2) \implies h(Sk(q), Sk(o_1)) < h(Sk(q), Sk(o_2))$
- Possible usage: Filter and Refine similarity search
 - Filter: having a query q, filter dataset X using Hamming distances $h(sk(q), sk(o)), o \in X$,
 - Refine: evaluate distance d(q, o) for objects o whose sketches sk(o) have small Hamming distances h(sk(q), sk(o))

Sketching Technique

Sketching technique suitable for the Metric space:

- dataset X is divided by Generalized hyperplane partitioning (GHP) into two parts
- first bit of all sketches sk(o), o ∈ X is set according to this division to 1 or 0
- another instance of GHP is selected to set another bit etc.



• Key question: how to select pivots p_0 and p_1 for GHPs?

The following properties improve the accuracy of the approximation of the ordering with respect to an arbitrary query. Having a dataset X:

• each bit of sketches should be set to 1 in one half of sketches (balanced bits)

$Sk(o_1)$:	1	0	1	1	0	0	1	1
$Sk(o_2)$:	1	0	0	0	1	1	0	1
<i>Sk</i> (<i>o</i> ₃):	0	1	0	1	1	0	0	0
<i>Sk</i> (<i>o</i> ₄):	0	1	1	0	0	1	1	0

Example: four sketches with balanced bits

- sketches should have low pairwise correlated bits
 - absolute value of Pearson correlation coefficient

Experiments – procedure

- Datasets X: 1M visual descriptors of images,
 - **DeCAF** dataset: 4,096 dimensional vectors, Euclidean distance (L_2)
 - Cophir dataset: 280 dimensional vectors, weighted sum of L_1 and L_2 distances

Experiments – procedure

- Datasets X: 1M visual descriptors of images,
 - **DeCAF** dataset: 4,096 dimensional vectors, Euclidean distance (L_2)
 - Cophir dataset: 280 dimensional vectors, weighted sum of L_1 and L_2 distances
- Precise *k* nearest neighbours (kNN) query evaluation:
 - For a given query q evaluate all distances d(q, o), o ∈ X and return k nearest objects

Experiments – procedure

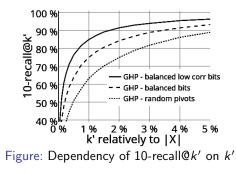
- Datasets X: 1M visual descriptors of images,
 - **DeCAF** dataset: 4,096 dimensional vectors, Euclidean distance (L_2)
 - Cophir dataset: 280 dimensional vectors, weighted sum of L_1 and L_2 distances
- Precise *k* nearest neighbours (kNN) query evaluation:
 - For a given query q evaluate all distances d(q, o), o ∈ X and return k nearest objects
- Approximate *k*NN query evaluation:
 - For query q select k' sketches with small Hamming distances $h(sk(q), sk(o)), o \in X$ from query sketch sk(q)
 - Objects $o \in X$ corresponding to these sketches form a *CandidateSet(q)*
 - Evaluate similarity d(q, o), o ∈ CandidateSet(q) to determine k most similar objects

- Datasets X: 1M visual descriptors of images,
 - **DeCAF** dataset: 4,096 dimensional vectors, Euclidean distance (L_2)
 - Cophir dataset: 280 dimensional vectors, weighted sum of L_1 and L_2 distances
- Precise *k* nearest neighbours (kNN) query evaluation:
 - For a given query q evaluate all distances d(q, o), o ∈ X and return k nearest objects
- Approximate *k*NN query evaluation:
 - For query q select k' sketches with small Hamming distances $h(sk(q), sk(o)), o \in X$ from query sketch sk(q)
 - Objects $o \in X$ corresponding to these sketches form a *CandidateSet(q)*
 - Evaluate similarity d(q, o), o ∈ CandidateSet(q) to determine k most similar objects
- Comparison: size of intersection of approximate answer with the precise one divided by k. (Denoted k-recall@k')

GHP - Proper Pivot Selection Results

Results, |X| = 1 M, k = 10, sketch length $\lambda = 64$ bits. Three curves:

- In randomly selected pivots
- pivots producing balanced bits
 - selected from superset of pivots, evaluated on a sample set of 100K objects, bits balanced with tolerance 5 %
- Solution bits with low pairwise correlations



Sketching Technique – Sketch Length Determination

Another question: what is a suitable length of sketches for particular data? Example: fixing desired level of recall:

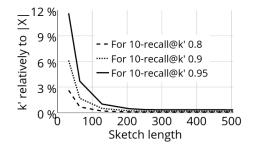


Figure: Dependency of k' on Sketch length fixing recall value 10-recall@k'

In this case we assume a suitable sketch length to be 200 - 240 (depends on preferences)

10 / 16

Formal Basics – Intrinsic Dimensionality

- Intrinsic dimensionality (iDim) the minimum number of parameters needed to account for the observed properties of the data
- *iDim* describes the *data complexity*

Formal Basics – Intrinsic Dimensionality

- Intrinsic dimensionality (iDim) the minimum number of parameters needed to account for the observed properties of the data
- *iDim* describes the *data complexity*

Other authors say:

- Dimensionality reduction is an ill-posed problem that can only be solved by assuming certain properties of the data (such as its intrinsic dimensionality)
- *Ideally*, the reduced representation should have a dimensionality that corresponds to the intrinsic dimensionality of the data

Formal Basics – Intrinsic Dimensionality

- Intrinsic dimensionality (iDim) the minimum number of parameters needed to account for the observed properties of the data
- *iDim* describes the *data complexity*

Other authors say:

- Dimensionality reduction is an ill-posed problem that can only be solved by assuming certain properties of the data (such as its intrinsic dimensionality)
- *Ideally*, the reduced representation should have a dimensionality that corresponds to the intrinsic dimensionality of the data

Our approach:

- Measure *iDim* of data and use it to estimate suitable sketch length
 - We use Chávez's formula $iDim = \frac{\mu^2}{2 \cdot \sigma^2}$, based on mean μ and variance σ^2 of distance distribution

Assume that *iDim* of created sketches will not be very different from *iDim* of data

Our Findings

In this paper we derive relationship between:

- *iDim* of sketches,
- length of sketches λ ,
- average pairwise bit correlation c

For sketches with balanced bits we transform Chávez's formula:

$$iDim pprox rac{\lambda}{2 \cdot (1 + (\lambda - 1) \cdot c^2)}$$
 (1)

Observations:

• *iDim* of sketches decreases with the second power of correlation *c*

Our Findings

In this paper we derive relationship between:

- *iDim* of sketches,
- length of sketches λ ,
- average pairwise bit correlation c

For sketches with balanced bits we transform Chávez's formula:

$$iDim pprox rac{\lambda}{2\cdot (1+(\lambda-1)\cdot c^2)}$$
 (1)

Observations:

- *iDim* of sketches decreases with the second power of correlation *c*
- Search for λ bits with lowest pairwise correlations in a set of λ' bits has complexity $O(\lambda'^{\lambda} \cdot \lambda^2)$ a heuristic must be used
- If we want low correlated bits, the correlation c grows with sketch length λ

Suitable Sketch Length Estimation

Let us focus on *iDim* of sketches and its relationship to observed recall:

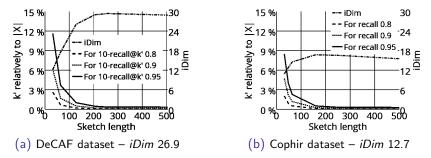
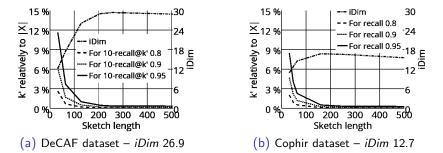


Figure: Dependency of k' needed to achieve given 10-recall@k' on sketch length λ

13 / 16

Suitable Sketch Length Estimation

Let us focus on *iDim* of sketches and its relationship to observed recall:

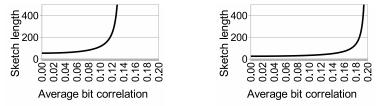


- *iDim* achieves its maximum for a certain length λ and then decreases
 due to too big increase of average bit correlation c in sketches
- Maximal *iDim* of sketches well corresponds to *iDim* of the original space it is slightly higher
- Length of sketches with maximal *iDim* well corresponds to suitable length of sketches for similarity search

Suitable Sketch Length Estimation

Suitable sketch length estimation:

- Measure *iDim* of data
- Assume that produced sketches will have the same iDim²
- Substitute this *iDim* to Equation 1 to get dependency of sketch length λ on bit correlation c:



(a) *iDim* 26.9 (DeCAF dataset) (b) *iDim* 12.7 (Cophir dataset) Observation: only some combination of bit correlation c and sketch length λ on the given curve are reachable. A difficulty of finding λ bits with given correlation c is related to slope of tangent of this function.

²This step is discussed in a paper

Analysis

Results: sketch length λ , k' for given recall, correlation c, slope of tangent

λ	k' for recall		iDim	С	slope		
	0.9	0.95	sketches		of tangent		
DeCAF descriptors (<i>iDim</i> : 26.9)							
128	0.50 %	1.01 %	26.1	0.107	3,428		
205	0.22 %	0.47 %	29.0	0.111	9,960		
256	0.17 %	0.35 %	29.4	0.115	16,095		
4,096	0.05 %	0.12 %	21.9	0.150	4,630,746		
CoPhIR dataset (<i>iDim</i> : 12.7)							
64	1.19%	2.27 %	14.5	0.138	1,284		
160	0.25 %	0.51 %	16.7	0.154	9,614		
256	0.16 %	0.30 %	16.5	0.163	25,557		
2,048	0.09%	0.18 %	9.0	0.235	1,721,419		

Conclusion: the length of sketches with high *iDim*, which is suitable for the similarity search can be estimated according to slope of tangent: we recommend value 10,000 - 15,000

December 12, 2016 15 / 16

Analysis

Results: sketch length λ , k' for given recall, correlation c, slope of tangent

λ	k' for recall		iDim	С	slop	e		
	0.9	0.95	sketches		of tangent			
DeCAF descriptors (<i>iDim</i> : 26.9)								
128	0.50 %	1.01 %	26.1	0.107		3,428		
205	0.22 %	0.47 %	29.0	0.111	(9,443)	9,960		
256	0.17 %	0.35 %	29.4	0.115	(15,183)	16,095		
4,096	0.05 %	0.12 %	21.9	0.150	4,630,746			
CoPhIR dataset (<i>iDim</i> : 12.7)								
64	1.19%	2.27 %	14.5	0.138		1,284		
160	0.25 %	0.51 %	16.7	0.154	(8,037)	9,614		
256	0.16 %	0.30 %	16.5	0.163	(21,812)	25,557		
2,048	0.09 %	0.18%	9.0	0.235	1,	721,419		

Conclusion: the length of sketches with high *iDim*, which is suitable for the similarity search can be estimated according to slope of tangent: we recommend value 10,000 - 15,000

December 12, 2016 15 / 16

Sketches – short bit-strings suitable for the similarity filtering Our paper contains:

- proposal of sketching technique which produce sketches with defined properties
 - balanced bits
 - low correlated bits
- formal procedure to estimate suitable sketch length
 - according to intrinsic dimensionality of data