Enhancing Similarity Search
Performance by Dynamic
Query Reordering

Filip Nalepa, Michal Batko, Pavel Zezula

Stream Processing in Similarity Search

= Motivation
= Image annotation — annotate a stream of images collected by a web crawler
= Publish/subscribe applications — categorize a stream of documents
= — Stream of query objects

= Stream: potentially infinite sequence of query objects (q,, 9., ---)

= Process as many query objects as possible, processing of a
guery object can be delayed — maximize throughput

Problem Definition

= Domain of objects D

= DB of objects D indexed in the metric space

= Distance function d: D x D — R determines the similarity of two
objects

= Stream of query objects ((d, ty), (05, 1), --.)
=q,€D
=t. —time of arrival, t, <t

= Evaluate k-NN query for each q;, i.e., find k most similar
objects in DB to q

= Optimization criteria — throughput
= Maximize the number of processed query objects

Similarity Search Approach

= Typical similarity search techniques:
= Partitioned data of DB stored on a disk
= Read a subset of partitions during query evaluation — bottleneck

= Assumption: similar query objects need similar sets of partitions

= |dea: reuse loaded partitions to save disk accesses — data partition
caching

= Problem: huge metric space — low probability of data partition
Intersection

= Solution: reorder query objects to obtain sequences of similar query
objects

Architecture

= Buffer: waiting query objects, query object reordering

= Metric index: query evaluation

= Cache: in-memory caching of data partitions

] Stream
Query

Query

Metric index

Result

—

Query Object Reordering within the Buffer

= Task: find sequences of similar query objects

= Solution:
= cluster query objects
= select a cluster and evaluate all the query objects in that cluster

How to Cluster?

= Has to be efficient

= Pivot-based clustering

= Fixed set of pivots p4, ..., p,, In the metric space

= Compute metric distance of a new query object to all the pivots

= Order the pivots from the nearest to the farthest one — pivot
permutation = cluster

(P2, P1, P3)
O o ©
O
©e® o b2
P1 ® (P2, P3, Py)
(]
(P1, P3, P2) @ P

@ D3

Hierarchical Clustering

= Individual levels correspond to the length of the common pivot
permutation prefix

= Internal node — common prefix of all children
= Leaves — query objects

= Query ordering: depth-first tree traversal
= Find lowest nonempty parent of previous query object — similar cluster

= Select child containing the oldest query object — no query starvation,
sufficient cluster density —

o

P2
Z N\ 3

P2P1| [P2P3 [pspl] [pspz]

‘4

d; ds Os d, 9 ds do Js

Hierarchical Clustering

= Individual levels correspond to the length of the common pivot
permutation prefix

= Internal node — common prefix of all children
= Leaves — query objects

= Query ordering: depth-first tree traversal
= Find lowest nonempty parent of previous query object — similar cluster

= Select child containing the oldest query object — no query starvation,
sufficient cluster density —

o

P2
Z N\ 3

P2P1| | P2P3 P3P | P3P,

ds d, d7 ds do ds Q1o

Hierarchical Clustering

= Individual levels correspond to the length of the common pivot
permutation prefix

= Internal node — common prefix of all children
= Leaves — query objects

= Query ordering: depth-first tree traversal
= Find lowest nonempty parent of previous query object — similar cluster

= Select child containing the oldest query object — no query starvation,
sufficient cluster density —

o

P2
Z N\ 3

P2P1| | P2P3 P3P | P3P,

A1 d11 d, 9 ds do ds Q1o

10

Experiments — Fixed Input Rate

= DB: 10 mil. images represented by MPEG-7 descriptors

= Stream of query objects: evaluation of approximate 10-NN
gueries (10 nearest neighbors)

= Cache size: 90,000 objects (0.9% of the DB)
= Fixed input rate: new query object arrives every X time units

= Average query time for no reordering and no caching: 113 ms

120
100

80
60
40
20
0

0 5000 10000
Elapsed time [s]

Buffer size (thousands)

—20 ms 30ms —60 ms

Throughput Delay Tradeoff

= Motivation
= publish-subscribe application
= requirement to obtain the latest data

= e.g., 10% of the data is required to be processed with the delay of at most
1 minute

= image annotation
= requirement to search for latest images
= 10% of images findable by keywords until 1 minute after their acquisition

= Goal: maximize expression w * |beforeDelayLimit| + |afterDelayLimit| for a
given delay limit

= |beforeDelayLimit| = set of query object processed until the given delay limit
« |afterDelayLimit| = set of query object processed after the given delay limit
= W = weight parameter

= Solution: modification of cluster ordering

12

Throughput Delay Tradeoff Approach

= Original ordering: oldest cluster first

= Modification:
= score for each cluster = a - |beforeLimitQueries| + b - oldestQueryAge
= beforeLimitQueries: set of query objects younger than the delay limit
= oldestQueryAge: age of the oldest query object in the cluster
= a, b: weighting parameters

= Depth-first traversal of the tree of clusters: select a child with the
highest score

13

Throughput Delay Tradeoff Approach Experiments
= 30 ms input frequency
= Delay limit: 1 minute
* Runtime: 4 hours
= Experiments with different ,a* weights (thousands in graphs)

b weight =1

_.250 500

3 O

g 200 = 400

’ 22

S 150 5 € 300

&)

@ 100 @ 3 200

B o<

%2 —

- o —

5 50 = 100

2 /o =

0 5000 10000 0 100 500 5000
Elapsed time [s] Weight (thousands)

—0 —100 500 5000 m Before delay limit m After delay limit

14

Throughput Delay Tradeoff Approach #2

= a - |beforeLimitQueries| + b - oldestQueryAge
= Switch between different strategies for cluster ordering, i.e.,
change the weights dynamically

= throughput maximization: select cluster containing the oldest
guery object
a=0;b=1

= maximization of low-delayed query objects: select a cluster
containing the highest number of newest query objects
a=1;b=0

= switch strategies based on buffer size limits
= upper limit exceeded — maximize throughput

= lower limit reached — focus on low delays

15

Throughput Delay Tradeoff Approach #2 Experiments

= 30 ms input frequency, different buffer size limits

= Delay limit (DL) = 1 minute

Experiments with various buffer size limits
(thousands)

150
100

o
o

5000

Buffer size (thousands)
o1
o

10000

Elapsed time [s]

Lower limit Upper limit Queries before
DL [%]
30,000 40,000 13
70,000 80,000 18
100,000 110,000 19

—30; 40
—70; 80
—100; 110

Results computed
after 2nd switch

16

Summary

= Stream of similarity query objects

= Enhancing the throughput by query reordering and data partition

caching

= Throughput delay tradeoff by modification of ordering strategies

?l Stream
AR

i

Query

Buffer

Query

—

Metric index

Result

17

