
Enhancing Similarity Search
Performance by Dynamic

Query Reordering

Filip Nálepa, Michal Batko, Pavel Zezula

Stream Processing in Similarity Search

▪ Motivation

▪ Image annotation – annotate a stream of images collected by a web crawler

▪ Publish/subscribe applications – categorize a stream of documents

▪ → stream of query objects

▪ Stream: potentially infinite sequence of query objects (q1, q2, …)

▪ Process as many query objects as possible, processing of a
query object can be delayed → maximize throughput

2

Problem Definition

▪ Domain of objects D

▪ DB of objects D indexed in the metric space

▪ Distance function d: D x D → R determines the similarity of two
objects

▪ Stream of query objects ((q1, t1), (q2, t2), …)

▪ qi ∈ D

▪ ti – time of arrival, ti ≤ ti+1

▪ Evaluate k-NN query for each qi, i.e., find k most similar
objects in DB to qi

▪ Optimization criteria – throughput

▪ Maximize the number of processed query objects

3

Similarity Search Approach

▪ Typical similarity search techniques:

▪ Partitioned data of DB stored on a disk

▪ Read a subset of partitions during query evaluation → bottleneck

▪ Assumption: similar query objects need similar sets of partitions

▪ Idea: reuse loaded partitions to save disk accesses → data partition
caching

▪ Problem: huge metric space → low probability of data partition
intersection

▪ Solution: reorder query objects to obtain sequences of similar query
objects

4

Architecture

▪ Buffer: waiting query objects, query object reordering

▪ Metric index: query evaluation

▪ Cache: in-memory caching of data partitions

5

Disk

Buffer
Query

Cache
Query

Stream

Result

Metric index

Query Object Reordering within the Buffer

▪ Task: find sequences of similar query objects

▪ Solution:

▪ cluster query objects

▪ select a cluster and evaluate all the query objects in that cluster

6

How to Cluster?

▪ Has to be efficient

▪ Pivot-based clustering

▪ Fixed set of pivots p1, …, pn in the metric space

▪ Compute metric distance of a new query object to all the pivots

▪ Order the pivots from the nearest to the farthest one → pivot
permutation = cluster

7

p1

p2

p3

(p2, p3, p1)

(p1, p3, p2)

(p2, p1, p3)

Hierarchical Clustering

▪ Individual levels correspond to the length of the common pivot
permutation prefix

▪ Internal node – common prefix of all children

▪ Leaves – query objects

▪ Query ordering: depth-first tree traversal

▪ Find lowest nonempty parent of previous query object → similar cluster

▪ Select child containing the oldest query object → no query starvation,
sufficient cluster density

8

p1 p2 p3

p1p2 p1p3 p2p1 p2p3 p3p1 p3p2

q1 q4 q8q2 q7 q3 q9
q5

Hierarchical Clustering

▪ Individual levels correspond to the length of the common pivot
permutation prefix

▪ Internal node – common prefix of all children

▪ Leaves – query objects

▪ Query ordering: depth-first tree traversal

▪ Find lowest nonempty parent of previous query object → similar cluster

▪ Select child containing the oldest query object → no query starvation,
sufficient cluster density

9

p1 p2 p3

p1p3
p2p1 p2p3 p3p1 p3p2

q8q2 q7 q3 q9
q5 q10

Hierarchical Clustering

▪ Individual levels correspond to the length of the common pivot
permutation prefix

▪ Internal node – common prefix of all children

▪ Leaves – query objects

▪ Query ordering: depth-first tree traversal

▪ Find lowest nonempty parent of previous query object → similar cluster

▪ Select child containing the oldest query object → no query starvation,
sufficient cluster density

10

p1 p2 p3

p1p3
p2p1 p2p3 p3p1 p3p2

q8q2 q7 q3 q9
q11

p1p2

q12 q10

Experiments – Fixed Input Rate

▪ DB: 10 mil. images represented by MPEG-7 descriptors

▪ Stream of query objects: evaluation of approximate 10-NN
queries (10 nearest neighbors)

▪ Cache size: 90,000 objects (0.9% of the DB)

▪ Fixed input rate: new query object arrives every x time units

▪ Average query time for no reordering and no caching: 113 ms

0

20

40

60

80

100

120

0 5000 10000

B
u

ff
e

r
s
iz

e
(t

h
o

u
s
a

n
d

s
)

Elapsed time [s]

20 ms 30 ms 60 ms

Throughput Delay Tradeoff

▪ Motivation

▪ publish-subscribe application

▪ requirement to obtain the latest data

▪ e.g., 10% of the data is required to be processed with the delay of at most
1 minute

▪ image annotation

▪ requirement to search for latest images

▪ 10% of images findable by keywords until 1 minute after their acquisition

▪ Goal: maximize expression w * |beforeDelayLimit| + |afterDelayLimit| for a
given delay limit

▪ |beforeDelayLimit| = set of query object processed until the given delay limit

▪ |afterDelayLimit| = set of query object processed after the given delay limit

▪ w = weight parameter

▪ Solution: modification of cluster ordering

12

Throughput Delay Tradeoff Approach

▪ Original ordering: oldest cluster first

▪ Modification:

▪ score for each cluster = a ∙ |beforeLimitQueries| + b ∙ oldestQueryAge

▪ beforeLimitQueries: set of query objects younger than the delay limit

▪ oldestQueryAge: age of the oldest query object in the cluster

▪ a, b: weighting parameters

▪ Depth-first traversal of the tree of clusters: select a child with the
highest score

13

Throughput Delay Tradeoff Approach Experiments

▪ 30 ms input frequency

▪ Delay limit: 1 minute

▪ Runtime: 4 hours

▪ Experiments with different „a“ weights (thousands in graphs)

▪ b weight = 1

14

0

50

100

150

200

250

0 5000 10000

B
u
ff
e
r

s
iz

e
(t

h
o
u
s
a
n
d
s
)

Elapsed time [s]

0 100 500 5000

0

100

200

300

400

500

0 100 500 5000

#
 p

ro
c
e
s
s
e
d

q
u
e
ri
e
s

(t
h
o
u
s
a
n
d
s
)

Weight (thousands)

Before delay limit After delay limit

Throughput Delay Tradeoff Approach #2

▪ a ∙ |beforeLimitQueries| + b ∙ oldestQueryAge

▪ Switch between different strategies for cluster ordering, i.e.,
change the weights dynamically

▪ throughput maximization: select cluster containing the oldest
query object

▪ a = 0; b = 1

▪ maximization of low-delayed query objects: select a cluster
containing the highest number of newest query objects

▪ a = 1; b = 0

▪ switch strategies based on buffer size limits

▪ upper limit exceeded → maximize throughput

▪ lower limit reached → focus on low delays

15

Throughput Delay Tradeoff Approach #2 Experiments

▪ 30 ms input frequency, different buffer size limits

▪ Delay limit (DL) = 1 minute

16

0

50

100

150

0 5000 10000

B
u

ff
e

r
s
iz

e
(t

h
o

u
s
a

n
d

s
)

Elapsed time [s]

Experiments with various buffer size limits
(thousands)

30; 40

70; 80

100; 110

Lower limit Upper limit Queries before

DL [%]

30,000 40,000 13

70,000 80,000 18

100,000 110,000 19

Results computed

after 2nd switch

Summary

▪ Stream of similarity query objects

▪ Enhancing the throughput by query reordering and data partition
caching

▪ Throughput delay tradeoff by modification of ordering strategies

17

Disk

Buffer
Query

Cache
Query

Stream

Result

Metric index

