
Enhancing Similarity Search
Throughput by Dynamic Query

Reordering

Filip Nálepa, Michal Batko, Pavel Zezula
Faculty of Informatics, Masaryk University, Brno, Czech Republic



Big Data Processing

▪ Large amount of data produced every second

▪ Need to process the data

▪ Two basic approaches:

▪ Store and process later, i.e., database processing

▪ Process continuously, i.e., stream processing

▪ Examples of stream processing applications:

▪ Surveillance camera stream and event detection

▪ Mail stream and spam filter

▪ Publish/subscribe applications

2



Stream Processing Scenarios

▪ Stream: potentially infinite sequence of data items (d1, d2, …)

▪ Basic scenarios:

▪ Data items processed immediately, possible data item skipping
→ minimize delay

▪ E.g., event detection in surveillance camera stream

▪ Process everything as fast as possible, data item can be delayed
→ maximize throughput

▪ That‘s our focus

▪ Motivating examples in similarity search

▪ Image annotation – annotate a stream of images collected by a 
web crawler

▪ Publish/subscribe applications – categorize a stream of documents

▪ → stream of query objects

3



Problem Definition

▪ Domain of objects D

▪ DB of objects D indexed in the metric space

▪ Distance function d: D x D → R determines the similarity of two
objects

▪ Stream of query objects ((q1, t1), (q2, t2), …)

▪ qi ∈ D

▪ ti – time of arrival, ti ≤ ti+1

▪ Evaluate k-NN query for each qi, i.e., find k most similar
objects in DB to qi

▪ Optimization criteria – throughput

▪ Maximize the number of processed query objects

4



Architecture

▪ Typical similarity search techniques:

▪ Partitioned data of DB stored on a disk

▪ Read a subset of partitions during query evaluation → bottleneck

▪ Idea: similar query objects need similar sets of partitions → save disk accesses

▪ Buffer: waiting query objects, query object reordering

▪ Metric index: query evaluation

▪ Cache: in-memory caching of data partitions

5

Disk

Buffer
Query

Cache
Query

Stream

Result

Metric index



Cache

▪ Generic metric index

▪ Data partitioning P = {p1, …, pn} where pi ⊆ D

▪ I(q) ⊆ P; partitions accessed during evaluation of q

▪ Partitions caching

▪ cache = {p1, …, pm} ⊆ P

▪ Cache utility cu = 
|𝐼 𝑞 ∩ 𝑐𝑎𝑐ℎ𝑒|

|𝐼 𝑞 |

▪ Time to process a given query: queryTime(cu)

▪ Assumption: cu1 ≤ cu2 → queryTime(cu1) ≥ queryTime(cu2)

6

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f 
q

u
e

ry
 t

im
e
 

c
o
m

p
a

re
d

 t
o

 n
o

 c
a
c
h
e

Cache utility (in %)



Buffer – Query Ordering

▪ Simplified buffer representation as an undirected complete graph G

▪ Vertices = query objects in the buffer

▪ Value of edge |pq| = time to process q after p (depends on the cache utility)

▪ Query ordering = path in G

▪ Throughput maximization: shortest path in G

▪ How to find a short path?

▪ How to construct the graph?

7

4

4

5

3

9
8

q1

q2

q3
q4



How to Find a Short Path?

▪ Shortest path search – NP-hard problem (travelling salesman)

▪ Added difficulty: new vertices added dynamically as new query
objects arrive to the buffer

▪ Heuristics: find a dense cluster and evaluate queries in the cluster

8



How to Construct the Graph and the Clusters?

▪ Requirements: efficient, support for graph evolution

▪ Approach: estimate the edge values (query times) by metric distances

▪ Low metric distance → high cache utility → low query time

▪ Computing all metric distances: time consuming

▪ → Pivot-based clustering

▪ Fixed set of pivots p1, …, pn in the metric space

▪ Compute metric distance of a new query object to all the pivots

▪ Order the pivots from the nearest to the farthest one → pivot permutation
= cluster

9

p1

p2

p3

(p2, p3, p1)

(p1, p3, p2)

(p2, p1, p3)



Experiments – Fixed Buffer Size

▪ DB: 10 mil. images represented by MPEG-7 descriptors

▪ Stream of query objects: evaluation of approximate 10-NN queries

▪ Cache size: 90,000 objects (0.9% of the DB)

▪ Fixed buffer size: 1 query object added per 1 processed query

▪ Baseline: no reordering, no caching

10

0%

10%

20%

30%

40%

50%

0 10000 20000 30000 40000

C
a
c
h
e

u
ti
lit

y

Buffer size

Cache utility

0

1

2

3

0 10000 20000 30000 40000

T
h
ro

u
g

h
p
u
t
s
p
e

d
u

p
c
o
m

p
a

re
d

to
 n

o
 o

p
ti
m

iz
a
ti
o
n

Buffer size

Speedup



Experiments – Fixed Input Rate

▪ DB: 10 mil. images represented by MPEG-7 descriptors

▪ Stream of query objects: evaluation of approximate 10-NN queries
(10 nearest neighbors)

▪ Cache size: 90,000 objects (0.9% of the DB)

▪ Fixed input rate: new query object arrives every x time units

▪ Average query time for no reordering and no caching: 113 ms

11

0

20

40

60

80

100

120

0 5000 10000B
u
ff
e

r
s
iz

e
(t

h
o
u

s
a
n

d
s
)

Elapsed time [s]

20 ms 30 ms 60 ms

20 ms 30 ms 60 ms

Max 

delay [s]

4031 2988 1565

Median

delay [s]

1525 894 234

Cache

utility

0.78 0.59 0.30

Delay: time since query object

arrived until it was processed



Summary

▪ Stream of similarity query objects

▪ Enhancing the throughput by query reordering and data partition caching

12

Disk

Buffer
Query

Cache
Query

Stream

Result

Metric index


