
MESSIF 3.0
Almost there...



MESSIF: General Information

● An open-source library developed at DISA
● Mainly for prototyping of indexing, search, 

retrieval algorithms

● Statistics:
○ almost 15 years
○ 460 classes
○ 84000 lines of code



Motivations for MESSIF 3.0

● organization of code (minimize duplications)
○ e.g., separate data and distance function

● standard formats for communication
○ JSON representation of data objects and operations

● operation processing cleanup
○ separate operation, answer, processors



Data Objects

● MESSIF is tight with metric-based algorithms
○ data object + distance

● Lastly, we also work with different data types
○ keywords, sequences, simple attributes

■ distances not always natural
○ one “data object” often combines several features

■ one data collection, but various indexes & storages

● Different distance functions for the same data
○ combining & weighting distances
○ index provides candidate set, then filtering & reranking







Data Objects: New Design

● All data objects “are JSON”
○ named fields
○ data types: int, float, String, int[], float [], String []
○ data ID (locator) - is just a field “_id”

● We need just one class: DataObject

● Distances are independent classes



Let’s see the code...



● Distances work with the data

Distances: New Design

Let’s see the code...



Data Objects: Reading & Writing

● MESSIF had its own format for 
reading/writing data into text
○ see example

● Now, we use standard JSON format
○ self-describing, flexible, less prone to errors
○ easy to use by external tools

■ standard readers/writers for all languages

○ see examples



JSON (de)serialization

● package messif.json
○ the core taken from org.json, a free implementation

Let’s see how to work with the data & distances



Binary Serialization

● MESSIF has its own system for efficient 
binary serialization (of data objects, etc.)



Binary Serialization: New Design

● Serialization of the JSON Record

Let’s have a look at the serialization and disk buckets



Operations

● Operations form the basic communication 
interface with a MESSIF “algorithm”
○ update data (insert, delete)
○ search: kNN, range, join

● Operations are POJO classes





Operations (cont.)

● Operation classes contain:
○ input parameters (given in operation constructor)
○ answer (output)
○ additional parameters (in Parametric)

■ can be both input and output
○ helper methods for operation processing 

■ building answer



Operations: Goals of New Design

● separate
○ operations (input parameters, immutable)
○ answers (output params)
○ operation processing methods

● use the flexibility of Record (named fields)
○ easy adding index-dependent parameters

● ...but keep the power of 
○ checking mandatory parameters (and their types)
○ and convenient access to parameter fields



Operations: New Design

● Operation parameters are stored in a Record
● Operations are interfaces
● We exploit java.lang.reflect.Proxy

○ to wrap Record as a given interface
○ e.g. method 

float RangeOperation.getRange()   
is internally translated to

Float Record.getRequiredField(“range”,Float.class)

See example of an operation and its usage

https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html






Operation Processing

● In MESSIF 2.0, operations could have been 
executed on the algorithms:
○ by directly calling method using Java reflection

MyAlgorithm.myMethod(KNNQueryOperation op)
○ or via NavigationProcessor & NavigationDirectory 

■ for given operation, algorithm creates a new 
object of type NavigationProcessor

■ and the processor is used step-by-step



Operation Processing: New Design

● Always use the concept of Processors
● Operations provide certain “helpers” that are 

used by the specific processors
● One can execute the operation on algorithm

○ Really as the wrapper class (InsertOperation)
○ or as a Record with type specified in field “_type”

● Algorithm has support for matching 
processors on operations



Application: Writing Config Files

● MESSIF Application
○ manage one or more running algorithms
○ allows to write a text configuration file

■ to create and execute operations
■ print the answer and statistics, etc.

● This concept is the same
○ the only change: creation of operations

See an example



TODO

● Remove “extractors”
○ and replace them by RecordProcessors

● AlgorithmObject: DataObject + Filters

● Management of “subdistances”



Where & How

● MESSIF is in GIT: 
https://bitbucket.org/disalab/messif/
○ branches: master (version2), version3

● We use Maven for packaging
○ mvn install produces 

■ messif-2.3.8-DEVEL.jar
■ messif-3.0.0-DEVEL.jar

● All other DISA projects are also at 
https://bitbucket.org/disalab/

https://bitbucket.org/disalab/messif/
https://bitbucket.org/disalab/messif/
https://bitbucket.org/disalab/
https://bitbucket.org/disalab/

