
Optimizing

Query Performance

in Metric Spaces

Matej Antol

Content

 Background and motivation - indexing metric spaces and query evaluation

 Motivation for query evaluation optimization

 Approach #1 – Inverted Cache Index (ICI)

 Approach #2 – Hybrid strategies for priority queue creation

 Conclusions and future work

2

Indexing in metric spaces

 Indexes based on objects’ mutual distances

 No coordinate system can be used to split data space

 Typically data-driven partitioning/clustering

 M-tree

 Clusters objects bottom up (like B-tree / R-tree)

 M-index

 Partitions space top down (recursive Voronoi partitioning)

3

M-tree example

o7

o1
o6

o10

o3

o2

o5

o4

o9

o8

o11

o1 4.5 -.- o2 6.9 -.-

o1 1.4 0.0 o10 1.2 3.3 o7 1.3 3.8 o2 2.9 0.0 o4 1.6 5.3

o2 0.0 o8 2.9o1 0.0 o6 1.4 o10 0.0 o3 1.2 o7 0.0 o5 1.3 o11 1.0 o4 0.0 o9 1.6

Covering

radius

Distance

to parent

Distance

to parent

4

NN Search Algorithm
3-NN(q):

 Process B1

 Process B2

 Process B4

 Process B5

 Skip B3

 PQ is empty, quit.

B2

o1

o3

o2

o4

o6
o7

o8

o9

B1

Response: O8, _ , _

Processing:

o5 o2 o3 o6 o7

B5 B3

B1

Final result

B4B2

o8 o9 o4 o1

B2 B4 B5 B3

B3

B4

_ , _ , _O8, O9 , _O8, O9 , O4O8, O9 , O1

B4B5B3done

o5

B1

B5

B2

5

q

Motivation: Querying performance

 CoPhIR dataset

 1 million images, 5 MPEG7 features per image, one weighted distance function

 Querying using 1000 selected queries – 30NN query

 1 query enters around 1000 leaf nodes (in case when total number of l.n. is 1124)

 Avg. number of leaf nodes containing answer objects is ~17

 Avg. position of last positive leaf node is ~230

 First positive leaf node is typically within first 5 visited leaf nodes

6

App. #1 - Inverted Cache Index (ICI)

 Remembering number of times an object/node was part of an answer to prior

queries.

 ICI value of any node equals sum of ICI values of all its children

o1 1.4 0.0

o10 0.0 o3 1.2

Covering

radius

o10 1.2 3.3

o1 0.0 o6 1.4

Distance

to parent
ICI

247

1 6 19 5

7

Inverted Cache Index (ICI)

 Use ICI with the distance between

 query and node

 query and object

 ICI can be depicted as a “mass” of the object/node

 So creating “attraction force” that pulls the query closer

 Priority queue in kNN algorithm is ordered by this

modified “distance”

original

distanceo q

o q’ q

ICI = x

o q’’ q

ICI = 2x

q’

𝑑𝑖𝑠𝑡𝐼𝐶𝐼

𝑑𝑖𝑠𝑡𝐼𝐶𝐼

8

Naïve ICI: Mass Distance (qd)

Formula of Naïve ICI:

𝑚𝑎𝑠𝑠 = log𝑏 𝐼𝐶𝐼 + 𝑏

𝑑𝑖𝑠𝑡𝐼𝐶𝐼 = Τ𝑑 𝑚𝑎𝑠𝑠

Where:

b = selected log base

d = distance in original metric space

ICI = 20, b = 10

9

Extended ICI: Gravity Distance (qgd)

Formula of Extended ICI:

𝑚𝑎𝑠𝑠 = log𝑏 𝐼𝐶𝐼 + 𝑏

𝑚𝑎𝑠𝑠𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = Τ𝑚𝑎𝑠𝑠 Τ𝑑 𝑚𝑎𝑥𝑑𝑖𝑠𝑡 𝑝 + 1

𝑑𝑖𝑠𝑡𝐼𝐶𝐼 = Τ𝑑 𝑚𝑎𝑠𝑠𝑔𝑟𝑎𝑣𝑖𝑡𝑦

Where:

d = distance in original metric space

maxdist = maximum distance

b = base of logarithm, mass growth

p = power of normalized distance

(how strong gravitation force is)
10

ICI = 20, b = 10,

p = 2, maxdist = 10

Experiment Protocol

 CoPhIR dataset

 1 million images, 5 MPEG7 features per image, one weighted distance function

 M-tree and M-index structures

 varying leaf node capacity

 Queries

 1000 most repeated queries w.r.t. Google Analytics on Mufin Demo App

 Experiments

1. Proof of concept – M-tree, l.n. cap = 200

comparison of original results with naïve and various forms of extended ICI

2. Results on M-tree, l.n. cap. = 2000, different learning and testing datasets

3. Results on M-index, l.n. cap. = 2000, different learning and testing datasets

 Comparison measure

 % of queries completed for 30-NN 11

Proof of concept – M-tree

12

%
 o

f
q
u
e
ri

e
s

c
o
m

p
le

te
d

Leaf node capacity 200

Total leaf nodes 11 571

Different distance alteration approaches

Results on M-tree

13

%
 o

f
q
u
e
ri

e
s

c
o
m

p
le

te
d

Leaf node capacity 2000

Learning on 1 year traffic (2009)

Testing on consequent 1 month traffic (1/2010)

14

Results on M-index
%
 o

f
q
u
e
ri

e
s

c
o
m

p
le

te
d

Leaf node capacity 2000

Learning on 1 year traffic (2009)

Testing on consequent 1 month traffic (1/2010)

Overall improvement

Indexing

structure

log-pwr Orig. visited l.n.

95% q. completed

ICI visited l.n.

95% q. completed

Improvement

M-tree 200 5-5 4600 4200 8,7 %

M-tree 2000 10-2 590 470 20,5 %

M-index 200 10-5 8000 6000 25 %

M-index 2000 10-5 1500 950 37 %

15

App. #2 - Hybrid strategies for priority queues

16

 Concluded from deeper analysis of queries in metric spaces

 Simple tool for processing and visualization of the data

 Distances

 Nodes radii

 Number of objects within leaf nodes

 ICI values

 Distances according to different queries

 lower bound

 Precise

 upper bound

Priority queues – current state

17

Three basic strategies are being used to create priority queues:

lower bound, upper bound and precise

LOWER BOUND

p1, p3, p2; prunes p4

visits small and further buckets later (p2)

UPPER BOUND

p1, p2, p4, p3

visits larger buckets later (p3)

PRECISE

p1, p2, p3; prunes p4

does not take “density” into account at all

q (5NN)

p3

p1

p2

p4

Priority queues – current state

18

 Current strategies are discrete – probably because of their intuitive representation

 Better priority queues can be constructed depending on density, size, no. of

objects, etc…

q p

LB

precise

UB

X?

LB = dist – rad

precise = dist

UB = dist + rad

X = dist – 1/3 rad ?

…

Priority queues performance analysis

19

 Best performing method (on our dataset) is lower bound

 We compared different parameters of the structure and queries

(distances, nodes radii, number of objects, ICI values, distances to queries)

 Preliminary results show that suitable compound of 2 (or more) strategies can lead

to better results

20

21

22

Suggested method

23

 We are trying to determine the best way to combine lower bound and precise

strategy

 The simplest approach is left untested (so far) // X = dist – 1/3 rad

 Suggested method follows the data projection on average linear regression of

coordinates of positive buckets

precise

lb

(0,0)

order = max (k*(dst-rad) + q, dst)

dst = |p,q|

rad = size(p)

empirical (average) values: k=0,45 q=1900

// k*(dst-rad) + q denotes parametric form

of linear regression (y = k*x + q)

Preliminary performance

24

 Total number of buckets in our structure is 11 571

 Last positive bucket has average position in priority queue 1 775

 Proof of concept setup in simulation has average position of last bucket around 1 343

(24% improvement)

 Proposed solution could outperform currently used strategies by tens of per cents

 Method is simple, clean and does not require any adjustments in indexing structures

Conclusions

 Inverted Cache Index

 Journal paper

 Application to approximate KNN query evaluation

 Hybrid strategies for priority queues

 First tests on real data

 Testing variety of strategies (alternatives to linear regression [max coordinates, …])

 Determining the relation between structure parameters and strategy setup (dependence on density,
avg dist, avg rad, number of objects, structure depth, …)

Future Work

 Inverted Cache Index

 Shows improvement greater than 25% for a state-of-the-art indexing structures

 Successful paper on ADBIS conference; paper was selected to be sent to impact journal

 Hybrid strategies for priority queues

 New, yet untested method with promising future

25

Thank you for your attention

Matej Antol 26

