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Indexing in metric spaces

 Indexes based on objects’ mutual distances

 No coordinate system can be used to split data space

 Typically data-driven partitioning/clustering

 M-tree

 Clusters objects bottom up (like B-tree / R-tree)

 M-index

 Partitions space top down (recursive Voronoi partitioning)
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M-tree example
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NN Search Algorithm
3-NN(q):

 Process B1

 Process B2

 Process B4

 Process B5

 Skip B3

 PQ is empty, quit.
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Motivation: Querying performance

 CoPhIR dataset

 1 million images, 5 MPEG7 features per image, one weighted distance function

 Querying using 1000 selected queries – 30NN query

 1 query enters around 1000 leaf nodes (in case when total number of l.n. is 1124)

 Avg. number of leaf nodes containing answer objects is ~17 

 Avg. position of last positive leaf node is ~230

 First positive leaf node is typically within first 5 visited leaf nodes
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App. #1 - Inverted Cache Index (ICI)

 Remembering number of times an object/node was part of an answer to prior 

queries.

 ICI value of any node equals sum of ICI values of all its children
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Inverted Cache Index (ICI)

 Use ICI with the distance between 

 query and node

 query and object

 ICI can be depicted as a “mass” of the object/node

 So creating “attraction force” that pulls the query closer

 Priority queue in kNN algorithm is ordered by this

modified “distance”

original

distanceo q
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o q’’ q

ICI = 2x

q’
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Naïve ICI: Mass Distance (qd)

Formula of Naïve ICI:

𝑚𝑎𝑠𝑠 = log𝑏 𝐼𝐶𝐼 + 𝑏

𝑑𝑖𝑠𝑡𝐼𝐶𝐼 = Τ𝑑 𝑚𝑎𝑠𝑠

Where:

b = selected log base

d = distance in original metric space 

ICI = 20, b = 10
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Extended ICI: Gravity Distance (qgd)

Formula of Extended ICI: 

𝑚𝑎𝑠𝑠 = log𝑏 𝐼𝐶𝐼 + 𝑏

𝑚𝑎𝑠𝑠𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = Τ𝑚𝑎𝑠𝑠 Τ𝑑 𝑚𝑎𝑥𝑑𝑖𝑠𝑡 𝑝 + 1

𝑑𝑖𝑠𝑡𝐼𝐶𝐼 = Τ𝑑 𝑚𝑎𝑠𝑠𝑔𝑟𝑎𝑣𝑖𝑡𝑦

Where:

d = distance in original metric space

maxdist = maximum distance

b = base of logarithm, mass growth

p = power of normalized distance

(how strong gravitation force is)
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ICI = 20, b = 10,

p = 2, maxdist = 10



Experiment Protocol

 CoPhIR dataset

 1 million images, 5 MPEG7 features per image, one weighted distance function

 M-tree and M-index structures

 varying leaf node capacity

 Queries

 1000 most repeated queries w.r.t. Google Analytics on Mufin Demo App

 Experiments

1. Proof of concept – M-tree, l.n. cap = 200

comparison of original results with naïve and various forms of extended ICI

2. Results on M-tree, l.n. cap. = 2000, different learning and testing datasets

3. Results on M-index, l.n. cap. = 2000, different learning and testing datasets

 Comparison measure

 % of queries completed for 30-NN 11



Proof of concept – M-tree
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Results on M-tree
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Results on M-index
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Overall improvement 

Indexing 

structure

log-pwr Orig. visited l.n. 

95% q. completed

ICI visited l.n.

95% q. completed

Improvement

M-tree 200 5-5 4600 4200 8,7 %

M-tree 2000 10-2 590 470 20,5 %

M-index 200 10-5 8000 6000 25 %

M-index 2000 10-5 1500 950 37 %
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App. #2 - Hybrid strategies for priority queues
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 Concluded from deeper analysis of queries in metric spaces

 Simple tool for processing and visualization of the data

 Distances

 Nodes radii

 Number of objects within leaf nodes

 ICI values

 Distances according to different queries

 lower bound

 Precise

 upper bound



Priority queues – current state
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Three basic strategies are being used to create priority queues:

lower bound, upper bound and precise

LOWER BOUND

p1, p3, p2; prunes p4

visits small and further buckets later (p2)

UPPER BOUND

p1, p2, p4, p3

visits larger buckets later (p3)

PRECISE

p1, p2, p3; prunes p4

does not take “density” into account at all

q (5NN)

p3

p1

p2

p4



Priority queues – current state
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 Current strategies are discrete – probably because of their intuitive representation

 Better priority queues can be constructed depending on density, size, no. of 

objects, etc…

q p

LB

precise

UB

X?

LB = dist – rad

precise = dist

UB = dist + rad

X = dist – 1/3 rad ?

…



Priority queues performance analysis

19

 Best performing method (on our dataset) is lower bound

 We compared different parameters of the structure and queries

(distances, nodes radii, number of objects, ICI values, distances to queries)

 Preliminary results show that suitable compound of 2 (or more) strategies can lead 

to better results
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Suggested method
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 We are trying to determine the best way to combine lower bound and precise 

strategy

 The simplest approach is left untested (so far) // X = dist – 1/3 rad

 Suggested method follows the data projection on average linear regression of 

coordinates of positive buckets

precise

lb

(0,0)

order = max (k*(dst-rad) + q, dst)

dst = |p,q|

rad = size(p)

empirical (average) values: k=0,45   q=1900

// k*(dst-rad) + q denotes parametric form

of linear regression (y = k*x + q)



Preliminary performance
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 Total number of buckets in our structure is 11 571

 Last positive bucket has average position in priority queue 1 775

 Proof of concept setup in simulation has average position of last bucket around 1 343 

(24% improvement)

 Proposed solution could outperform currently used strategies by tens of per cents

 Method is simple, clean and does not require any adjustments in indexing structures  



Conclusions

 Inverted Cache Index

 Journal paper

 Application to approximate KNN query evaluation

 Hybrid strategies for priority queues

 First tests on real data

 Testing variety of strategies (alternatives to linear regression [max coordinates, …])

 Determining the relation between structure parameters and strategy setup (dependence on density, 
avg dist, avg rad, number of objects, structure depth, …)

Future Work

 Inverted Cache Index

 Shows improvement greater than 25% for a state-of-the-art indexing structures

 Successful paper on ADBIS conference; paper was selected to be sent to impact journal

 Hybrid strategies for priority queues

 New, yet untested method with promising future 
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Thank you for your attention
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