Optimizing
Query Performance
in Metric Spaces

Matej Antol

Content

» Background and motivation - indexing metric spaces and query evaluation
» Motivation for query evaluation optimization

» Approach #1 - Inverted Cache Index (ICl)
» Approach #2 - Hybrid strategies for priority queue creation

» Conclusions and future work

Indexing in metric spaces

» Indexes based on objects’ mutual distances

» No coordinate system can be used to split data space
» Typically data-driven partitioning/clustering

» M-tree
» Clusters objects bottom up (like B-tree / R-tree)

» M-index

» Partitions space top down (recursive Voronoi partitioning)

M-tree example

Covering
radius

Distance
to parent

0.0 |og |1.4 019

NN Search Algonthm processing: Bone /F‘m”es““

3-NN(q): Response: Qg, Oy, Oy

» Process®,
» Process @2 LT s
» Process B, (31 e
» Process B,

» Skip B,

» PQ is empty, quit.

MR R R
B,| B, 5| B;

. ¢A};}\\

0g | 0g || 04| 0|/ 05| 0,05 || O | O
B, B, Bs B,

Motivation: Querying performance

» CoPhIR dataset

» 1 million images, 5 MPEG7 features per image, one weighted distance function

» Querying using 1000 selected queries - 30NN query
» 1 query enters around leaf nodes (in case when total number of L.n. is 1124)
» Avg. number of leaf nodes containing answer objects is
» Avg. position of last positive leaf node is

» First positive leaf node is typically within first 5 visited leaf nodes

App. #1 - Inverted Cache Index (ICl)

» Remembering number of times an object/node was part of an answer to prior
queries.

» ICI value of any node equals sum of ICl values of all its children

Covering Distance ICl
radius to parent
0, |1.4|0.0] | ® ||0,(|1.2|3.3 o~

Inverted Cache Index (ICl)

Use ICI with the distance between
» query and node
» query and object

ICl can be depicted as a “mass” of the object/node

» So creating “attraction force” that pulls the query closer

Priority queue in kNN algorithm is ordered by this
modified “distance”

m

original
o distance
-«
ICl = x
P \\\
\
(0] _ \\ ¢
P
K dlStICI
~ //
ICI = 2x

-
- =~

-~ _— =

Naive ICl: Mass Distance (qd)

Formula of Naive ICI:

=
N PR

-e-QOriginal
-+Naive |Cl| 20
--Naive ICl 100

=
o

mass = log,(ICI + b)

dist;c; = d/mass

Where:

b = selected log base

Distance after ICI computation

d = distance in original metric space 4 5 6

Original distance

ICl =20, b=10

Extended ICl: Gravity Distance (qgd)

Formula of Extended ICI:

mass = log,(ICI + b)

H
N

-e-Original
-+Naive IC| 20
-=-Extended ICI 20

e
o N

Massgrapity = Mass/ ((d/maxdist)P + 1)

distic; = d/maSSgravity

Where:

d = distance in original metric space

Distance after ICl computation

maxdist = maximum distance 4 5 6
b = base of logarithm, mass growth Original distance

p = power of normalized distance

ICl =20, b =10,
(how strong gravitation force is) p = 2, maxdist = 10

Experiment Protocol

» CoPhIR dataset
» 1 million images, 5 MPEG7 features per image, one weighted distance function
» M-tree and M-index structures
» varying leaf node capacity
» Queries
» 1000 most repeated queries w.r.t. Google Analytics on Mufin Demo App
» Experiments

1. Proof of concept - M-tree, L.n. cap = 200
comparison of original results with naive and various forms of extended ICI

2. Results on M-tree, l.n. cap. = 2000, different learning and testing datasets
3. Results on M-index, l.n. cap. = 2000, different learning and testing datasets
» Comparison measure

» % of queries completed for 30-NN

Proof of concept - M-tree

Leaf node capacity 200
Total leaf nodes 11 571
Different distance alteration approaches

-e-original mtree 200

-—mtree 200 Ib

—-—mtree 200 qd
mtree 200 qdg

©
]
o+
Q
o
=
(@]
(®)
(%]
kY
c
v
=)
O
Y—
o
NS

——mtree 200 gdg-freq

2000 3000 4000 5000 6000 7000 8000
Accessed buckets

Results on M-tree

Leaf node capacity 2000
Learning on 1 year traffic (2009)

Testing on consequent 1 month traffic (1/2010)

D N 0 O
o O O O

©
(]
-
Q
Q.
=
(©)
(®)
wn
Q
c
Q
=)
(o
Y—
(®)
R

400 500 600
Accessed buckets

-e-original mtree 2000
-=—|og 5 pwr 5 or
——|og 10 pwr 2 or

log 10 pwr 5 or
——|og 10 pwr 10 or

700 800 900

Results on M-index

Leaf node capacity 2000
Learning on 1 year traffic (2009)
Testing on consequent 1 month traffic (1/2010)

-e-original mindex 2000
-=—|og 10 pwr 2
——log 10 pwr 5

log 10 pwr 10

©
(]
-
Q
Q.
=
(©)
(®)
wn
Q
c
Q
=)
(o
Y—
(®)
R

1000 1500 2000 2500 3000
Accessed buckets

Overall improvement

M-tree 200
M-tree 2000

M-index 200
M-index 2000

App. #2 - Hybrid strategies for priority queues

» Concluded from deeper analysis of queries in metric spaces

» Simple tool for processing and visualization of the data
Distances

Nodes radii

Number of objects within leaf nodes

ICI values

vV v . v v Vv

Distances according to different queries
» lower bound
» Precise

» upper bound

Priority queues - current state

Three basic strategies are being used to create priority queues:
lower bound, upper bound and precise

LOWER BOUND
p1, p3, p2; prunes p4

visits small and further buckets later (p2) ®
q (5NN)
UPPER BOUND —
p1, p2, p4, p3

visits larger buckets later (p3)

PRECISE
p1, p2, p3; prunes p4
does not take “density” into account at all

Priority queues - current state

» Current strategies are discrete - probably because of their intuitive representation

» Better priority queues can be constructed depending on density, size, no. of
objects, etc...

LB = dist - rad
precise = dist
UB = dist + rad

Priority queues performance analysis

» Best performing method (on our dataset) is lower bound

» We compared different parameters of the structure and queries

(distances, nodes radii, number of objects, ICl values, distances to queries)

» Preliminary results show that suitable compound of 2 (or more) strategies can lead
to better results

Vagt
* Y -.b.ﬂn

¥ =}
.
L] . . -
- -
o™
0
[Tp]
=r
S
o)}
o
o
lt_.....”....l -
l=]
o~
. - .
]
s =}
0] =]
£ 7
o .
sl
o
™~
]
=
— . o
a . -
&
M ' ..-... . "
m -
=) .
!.._/.._r » - .
o] . .
]
@ .
=
0 -
p -
3 : . .
. " .
- -
=}
o
=}
—
|
.
- . -
.
=}
[=}
5}
—
|
[=} (=} [=} [=}
=} =} =} =}
w7 =} L =}
o ™ o o

1sd

DST

3500

3000

2500

2000

—1500

Odpovede/zobrazene/nezobrazene: 29/7009/4562

—1000 —-500 0

500

Odpovede/zobrazene/nezobrazene: 20/468/11103 B Qe S

2500

2000
®
° o® o ®

D5T
o
®
e
‘e

® X
S ° X W

1000

500

—800 -600

-1600 —1400 —1200 —1000

-1800

Suggested method

V'S

precise. °®

» We are trying t¢ determine the best way t.o.comb.ine lczwer bound and precise
strategy o o0 | %
o ‘ ° o

» The simplest agproagh is left mﬂtegt,ed‘éod‘arﬁ //
[o

» Suggested method follows the d”at&p’rojec tion on average linear regression of
coordinates of positive buckets

(0,0)
v b
order = max (k*(dst-rad) + q, dst)
dst = |p,q|
rad = size(p)

empirical (average) values: k=0,45 q=1900

// k*(dst-rad) + q denotes parametric form
of linear regression (y = k*x + q)

Preliminary performance

>

Total number of buckets in our structure is 11 571

Last positive bucket has average position in priority queue 1 775

Proof of concept setup in simulation has average position of last bucket around 1 343
(24% improvement)

Proposed solution could outperform currently used strategies by tens of per cents

Method is simple, clean and does not require any adjustments in indexing structures

Conclusions

» Inverted Cache Index
» Shows improvement greater than 25% for a state-of-the-art indexing structures
» Successful paper on ADBIS conference; paper was selected to be sent to impact journal

» Hybrid strategies for priority queues
» New, yet untested method with promising future ©

Future Work

» Inverted Cache Index
» Journal paper
» Application to approximate KNN query evaluation

» Hybrid strategies for priority queues
» First tests on real data
» Testing variety of strategies (alternatives to linear regression [max coordinates, ...])

» Determining the relation between structure parameters and strategy setup (dependence on density,
avg dist, avg rad, number of objects, structure depth, ...)

Thank you for your attention

Matej Antol

