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Indexing in metric spaces

» Indexes based on objects’ mutual distances

» No coordinate system can be used to split data space
» Typically data-driven partitioning/clustering

» M-tree
» Clusters objects bottom up (like B-tree / R-tree)

» M-index

» Partitions space top down (recursive Voronoi partitioning)
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Motivation: Querying performance

» CoPhIR dataset

» 1 million images, 5 MPEG7 features per image, one weighted distance function

» Querying using 1000 selected queries - 30NN query
» 1 query enters around leaf nodes (in case when total number of L.n. is 1124)
» Avg. number of leaf nodes containing answer objects is
» Avg. position of last positive leaf node is

» First positive leaf node is typically within first 5 visited leaf nodes




App. #1 - Inverted Cache Index (ICl)

» Remembering number of times an object/node was part of an answer to prior
queries.

» ICI value of any node equals sum of ICl values of all its children

Covering Distance ICl
radius to parent
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Inverted Cache Index (ICl)

Use ICI with the distance between
» query and node
» query and object

ICl can be depicted as a “mass” of the object/node

» So creating “attraction force” that pulls the query closer

Priority queue in kNN algorithm is ordered by this
modified “distance”
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Naive ICl: Mass Distance (qd)

Formula of Naive ICI:
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mass = log,(ICI + b)

dist;c; = d/mass

Where:

b = selected log base

Distance after ICI computation

d = distance in original metric space 4 5 6

Original distance

ICl =20, b=10




Extended ICl: Gravity Distance (qgd)

Formula of Extended ICI:

mass = log,(ICI + b)
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Massgrapity = Mass/ ((d/maxdist)P + 1)

distic; = d/maSSgravity

Where:

d = distance in original metric space

Distance after ICl computation

maxdist = maximum distance 4 5 6
b = base of logarithm, mass growth Original distance

p = power of normalized distance

ICl =20, b =10,
(how strong gravitation force is) p = 2, maxdist = 10



Experiment Protocol

» CoPhIR dataset
» 1 million images, 5 MPEG7 features per image, one weighted distance function
» M-tree and M-index structures
» varying leaf node capacity
» Queries
» 1000 most repeated queries w.r.t. Google Analytics on Mufin Demo App
» Experiments

1. Proof of concept - M-tree, L.n. cap = 200
comparison of original results with naive and various forms of extended ICI

2. Results on M-tree, l.n. cap. = 2000, different learning and testing datasets
3. Results on M-index, l.n. cap. = 2000, different learning and testing datasets
» Comparison measure

» % of queries completed for 30-NN




Proof of concept - M-tree

Leaf node capacity 200
Total leaf nodes 11 571
Different distance alteration approaches
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Results on M-tree

Leaf node capacity 2000
Learning on 1 year traffic (2009)

Testing on consequent 1 month traffic (1/2010)
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Results on M-index

Leaf node capacity 2000
Learning on 1 year traffic (2009)
Testing on consequent 1 month traffic (1/2010)
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Overall improvement
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App. #2 - Hybrid strategies for priority queues

» Concluded from deeper analysis of queries in metric spaces

» Simple tool for processing and visualization of the data
Distances

Nodes radii

Number of objects within leaf nodes

ICI values
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Distances according to different queries
» lower bound
» Precise

» upper bound




Priority queues - current state

Three basic strategies are being used to create priority queues:
lower bound, upper bound and precise

LOWER BOUND
p1, p3, p2; prunes p4

visits small and further buckets later (p2) ®
q (5NN)
UPPER BOUND —
p1, p2, p4, p3

visits larger buckets later (p3)

PRECISE
p1, p2, p3; prunes p4
does not take “density” into account at all




Priority queues - current state

» Current strategies are discrete - probably because of their intuitive representation

» Better priority queues can be constructed depending on density, size, no. of
objects, etc...

LB = dist - rad
precise = dist
UB = dist + rad




Priority queues performance analysis

» Best performing method (on our dataset) is lower bound

» We compared different parameters of the structure and queries

(distances, nodes radii, number of objects, ICl values, distances to queries)

» Preliminary results show that suitable compound of 2 (or more) strategies can lead
to better results
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Suggested method

V'S

precise.  °®

» We are trying t¢ determine the best way t.o.comb.ine lczwer bound and precise
strategy o o0 | %
o ‘ ° o

» The simplest agproagh is left mﬂtegt,ed‘éod‘arﬁ //
[ o

» Suggested method follows the d”at&p’rojec tion on average linear regression of
coordinates of positive buckets

(0,0)
v b
order = max (k*(dst-rad) + q, dst)
dst = |p,q|
rad = size(p)

empirical (average) values: k=0,45 q=1900

// k*(dst-rad) + q denotes parametric form
of linear regression (y = k*x + q)




Preliminary performance

>

Total number of buckets in our structure is 11 571

Last positive bucket has average position in priority queue 1 775

Proof of concept setup in simulation has average position of last bucket around 1 343
(24% improvement)

Proposed solution could outperform currently used strategies by tens of per cents

Method is simple, clean and does not require any adjustments in indexing structures




Conclusions

» Inverted Cache Index
» Shows improvement greater than 25% for a state-of-the-art indexing structures
» Successful paper on ADBIS conference; paper was selected to be sent to impact journal

» Hybrid strategies for priority queues
» New, yet untested method with promising future ©

Future Work

» Inverted Cache Index
» Journal paper
» Application to approximate KNN query evaluation

» Hybrid strategies for priority queues
» First tests on real data
» Testing variety of strategies (alternatives to linear regression [max coordinates, ...])

» Determining the relation between structure parameters and strategy setup (dependence on density,
avg dist, avg rad, number of objects, structure depth, ...)
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