Speeding up Similarity Search by Sketches

Vladimir Mic David Novak Pavel Zezula

Faculty of Informatics Masaryk University Brno, Czech Republic

October 26, 2016

Vladimir Mic, David Novak, Pavel Zezula Speeding up Similarity Search by Sketches

• Similarity search in Metric space (D, d)

• Dataset $X \subseteq D$

- Techniques (*indexes*) for similarity search usually:
 - decompose dataset X into disjoint partitions P_1, \ldots, P_z
 - for query object $q \in D$ evaluate similarity query:
 - determine partitions which likely contain similar objects
 - union these partitions into CandidateSet(q)
 - for each object o ∈ CandidateSet(q) evaluate distance d(q, o) to determine AnswerSet(q) ⊆ CandidateSet(q) (refinement)

(b) Distance densities of X and CandidateSet (q_1) to selected query q_1

- Beside similar objects, CandidateSet(q) usually contains many dissimilar objects as well (especially in complex metric spaces)
- The size of the candidate set determines the query processing time:
 - number of evaluations of function d,
 - I/O cost if dataset X is stored on hard-drives

Objectives and Approach

• We propose to add a small piece of information to each object to

- significantly reduce the size of *CandidateSet(q)*
- but preserve objects *o* from *AnswerSet*(*q*)

Figure: Filtered candidate set with almost preserved answer set

• The additional information is represented by an object sketch

Sketch (of object $o \in D$)

• Short bit string representation of object o

$$Sk(o)$$
: 1 0 1 1 0 0 0 0

- Distance of two sketches is measured by Hamming distance h
- Each bit value is set by partitioning of the domain *D* into two parts using *Generalized hyperplane partitioning* (*GHP*)

Figure: Two instances of GHP used to set bits μ and ν

Sketch (of object $o \in D$)

• Short bit string representation of object o

$$Sk(o)$$
: 1 0 1 1 0 0 0 0

- Distance of two sketches is measured by Hamming distance h
- Each bit value is set by partitioning of the domain *D* into two parts using *Generalized hyperplane partitioning* (*GHP*)

Figure: Two instances of GHP used to set bits μ and ν

Sketch approximately determines object position in the metric space
Ideally it would preserve an object ordering with respect to an arbitrary query q: ∀q ∈ D : ∀o₁, o₂ ∈ X : d(q, o₁) < d(q, o₂) ⇒ h(Sk(q), Sk(o₁)) < h(Sk(q), Sk(o₂)) The following properties improve the sketch ability to approximate the ordering on a given dataset X:

- sketches should reflect spatial relationships between objects (achieved by GHP of dataset)
- each bit of sketches should be set to 1 in one half of sketches (balanced bits)

$Sk(o_1)$:	1	0	1	1	0	0	1	1
Sk(o ₂):	1	0	0	0	1	1	0	1
Sk(03):	0	1	0	1	1	0	0	0
Sk(o _n):	0	1	1	0	0	1	1	0

Example: sketches of four objects with balanced bits

• sketches should have low correlated bits

Candidate Set Filtering with Sketches

• Proposed approach: shrink *CandidateSet(q)* using the Hamming distances of corresponding sketches

Figure: General concept of index enhancement with sketches

Candidate Set Filtering with Sketches

• Proposed approach: shrink *CandidateSet(q)* using the Hamming distances of corresponding sketches

Figure: General concept of index enhancement with sketches

Description of Our Experiments

- Two datasets:
 - DeCAF and CoPhIR, each with 1,000,000 objects
 - Visual descriptors of images
 - Vectors of 4,096 and 280 floats respectively
- Two indexes:
 - M-Index
 - PPP-codes
- Two lengths of sketches:
 - 64 bits and 32 bits

For a whole family of indexes, sketches can be created nearly for free

- Many indexes use a static set of pivots to organize objects and all the object-pivot distances are computed
- We can use this information to create sketches practically for free

Experiments – Distance Density on Candidate Set

A selected query q_1 :

- black curve: distance density of CandidateSet(q1) of size 50,000 objects with respect to q1
- grey curve: 50 % of CandidateSet(q1) filtered out according to the Hamming distance between corresponding sketches

Objects within the smallest distances are preserved (499 out of 500).

Experiments – Measured Recall

Selected results: DECAF dataset

- Size of candidate set selected by index
 - M-Index and PPP codes respectively
- Pelative size of candidate set filtered out using 64bit sketches
- Measured recall on 10-NN queries

M-Index	Percentage	Recall	PPP-Codes	Percentage	Recall
cand. set	filtered out		cand. set	filtered out	
	0 %	97.6		0 %	97.3
100,000	50 %	97.4	20,000	30 %	97.1
	65 %	97.0		50 %	96.4
	0%	91.0		0 %	94.3
40,000	50 %	90.7	10,000	30 %	94.0
	56 %	90.1		50 %	92.9

Table: Results – example

- General enhancement of indexes with sketches
- Negligible memory overhead
- Practically no additional time needed for the whole family of indexes
- Significant reduction of candidate set (30–65%) with a small recall loss (0.2–0.9%)
- It promises significant speed-up of query evaluation