IA008: Computational Logic

1. Propositional Logic

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Basic Concepts

Propositional Logic

Syntax

- Variables $A, B, C, \ldots, X, Y, Z, \ldots$
- Operators \land , \lor , \neg , \rightarrow , \leftrightarrow

$$\varphi := A \land (A \to B) \to B,$$

$$\psi := \neg (A \land B) \leftrightarrow (\neg A \lor \neg B).$$

- entailment $\varphi \models \psi$
- equivalence $\varphi \equiv \psi$
- $\varphi \equiv \psi$ iff $\varphi \vDash \psi$ and $\psi \vDash \varphi$

- entailment $\varphi \models \psi$
- equivalence $\varphi \equiv \psi$
- $\varphi \equiv \psi$ iff $\varphi \models \psi$ and $\psi \models \varphi$
- satisfiability $\varphi \neq \text{false}$
- validity $\varphi \equiv \text{true}$
- Every valid formula is satisfiable.
- φ is valid iff $\neg \varphi$ is not satisfiable.
- $\varphi \vDash \psi$ iff $\varphi \rightarrow \psi$ is valid.

Examples

• $A \wedge (A \rightarrow B) \rightarrow B$ is

- entailment $\varphi \models \psi$
- equivalence $\varphi \equiv \psi$
- $\varphi \equiv \psi$ iff $\varphi \models \psi$ and $\psi \models \varphi$
- satisfiability $\varphi \neq \text{false}$
- validity $\varphi \equiv \text{true}$
- Every valid formula is satisfiable.
- φ is valid iff $\neg \varphi$ is not satisfiable.
- $\varphi \models \psi$ iff $\varphi \rightarrow \psi$ is valid.

- ▶ $A \land (A \rightarrow B) \rightarrow B$ is valid.
- \triangleright $A \lor B$ is

- entailment $\varphi \models \psi$
- equivalence $\varphi \equiv \psi$
- $\varphi \equiv \psi$ iff $\varphi \models \psi$ and $\psi \models \varphi$
- satisfiability $\varphi \neq \text{false}$
- validity $\varphi \equiv \text{true}$
- Every valid formula is satisfiable.
- φ is valid iff $\neg \varphi$ is not satisfiable.
- $\varphi \models \psi$ iff $\varphi \rightarrow \psi$ is valid.

- ▶ $A \land (A \rightarrow B) \rightarrow B$ is valid.
- $A \vee B$ is satisfiable but not valid.
- $\neg A \land A \text{ is}$

- entailment $\varphi \models \psi$
- equivalence $\varphi \equiv \psi$
- $\varphi \equiv \psi$ iff $\varphi \models \psi$ and $\psi \models \varphi$
- satisfiability $\varphi \neq \text{false}$
- validity $\varphi \equiv \text{true}$
- Every valid formula is satisfiable.
- φ is valid iff $\neg \varphi$ is not satisfiable.
- $\varphi \models \psi$ iff $\varphi \rightarrow \psi$ is valid.

- ▶ $A \land (A \rightarrow B) \rightarrow B$ is valid.
- $A \vee B$ is satisfiable but not valid.
- $ightharpoonup \neg A \wedge A$ is not satisfiable.

Normal Forms

Conjunctive Normal Form (CNF)

$$(A \lor \neg B) \land (\neg A \lor C) \land (A \lor \neg B \lor \neg C)$$

Disjunctive Normal Form (DNF)

$$(A \wedge C) \vee (\neg A \wedge \neg B) \vee (A \wedge \neg B \wedge \neg C)$$

Clauses

Definitions

- literal A or $\neg A$
- ► clause set of literals $\{A, B, \neg C\}$ short-hand for disjunction $A \lor B \lor \neg C$

Clauses

Definitions

- literal A or $\neg A$
- ► clause set of literals $\{A, B, \neg C\}$ short-hand for disjunction $A \lor B \lor \neg C$

CNF
$$\varphi := (A \vee \neg B \vee C) \wedge (\neg A \vee C) \wedge B$$

clauses $\{A, \neg B, C\}, \{\neg A, C\}, \{B\}$

Clauses

Definitions

- literal A or $\neg A$
- ► clause set of literals $\{A, B, \neg C\}$ short-hand for disjunction $A \lor B \lor \neg C$

Example

CNF
$$\varphi := (A \vee \neg B \vee C) \wedge (\neg A \vee C) \wedge B$$

clauses $\{A, \neg B, C\}, \{\neg A, C\}, \{B\}$

Notation

$$\Phi[L := \text{true}] := \left\{ C \setminus \{\neg L\} \mid C \in \Phi, L \notin C \right\}.$$

The Satisfiability Problem

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Input: a set of clauses Φ

```
Output: true if \Phi is satisfiable, false otherwise.
DPLL(\Phi)
  for every singleton \{L\} in \Phi
                                               (* simplify \Phi *)
     \Phi := \Phi[L := true]
  for every literal L whose negation does not occur in \Phi
     \Phi := \Phi[L := true]
  if \Phi contains the empty clause then (* are we done? *)
     return false
  if \Phi is empty then
     return true
  choose some literal L in \Phi
                                             (* try L := \text{true and } L := \text{false *})
  if DPLL(\Phi[L := true]) then
     return true
  else
     return DPLL(\Phi[L := false])
```

$$\Phi := \{ \{A, B, \neg C\}, \ \{\neg B, C, D\}, \ \{\neg A, \neg B, \neg D\}, \ \{B, C, D\},$$
$$\{\neg A, \neg B, \neg C\}, \ \{\neg A, \neg C, \neg D\} \}$$

Step 1: A := true

$$\Phi := \{ \{A, B, \neg C\}, \{\neg B, C, D\}, \{\neg A, \neg B, \neg D\}, \{B, C, D\}, \{\neg A, \neg B, \neg C\}, \{\neg A, \neg C, \neg D\} \}$$

Step 1: A := true

$$\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$$

Step 2: B := true

$$\Phi := \{ \{A, B, \neg C\}, \{\neg B, C, D\}, \{\neg A, \neg B, \neg D\}, \{B, C, D\}, \{\neg A, \neg B, \neg C\}, \{\neg A, \neg C, \neg D\} \}$$

Step 1:
$$A := true$$

$$\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$$

Step 2: B := true

$$\{C,D\}, \{\neg D\}, \{\neg C\}, \{\neg C,\neg D\}$$

Step 3: C :=false and D :=false

$$\Phi := \{ \{A, B, \neg C\}, \{\neg B, C, D\}, \{\neg A, \neg B, \neg D\}, \{B, C, D\}, \{\neg A, \neg B, \neg C\}, \{\neg A, \neg C, \neg D\} \}$$

Step 1:
$$A := \text{true}$$

$$\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$$

Step 2: B := true

$$\{C,D\}, \{\neg D\}, \{\neg C\}, \{\neg C,\neg D\}$$

Step 3: C :=false and D :=false

$$\{D\}, \{\neg D\}$$

$$\Phi := \{ \{A, B, \neg C\}, \{\neg B, C, D\}, \{\neg A, \neg B, \neg D\}, \{B, C, D\}, \{\neg A, \neg B, \neg C\}, \{\neg A, \neg C, \neg D\} \}$$

Step 1:
$$A := true$$

$$\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$$

Step 2: B := true

$$\{C,D\}, \{\neg D\}, \{\neg C\}, \{\neg C,\neg D\}$$

Step 3: C :=false and D :=false

$$\{D\}, \{\neg D\}$$

Ø failure

$$\Phi := \{ \{A, B, \neg C\}, \ \{\neg B, C, D\}, \ \{\neg A, \neg B, \neg D\}, \ \{B, C, D\},$$
$$\{\neg A, \neg B, \neg C\}, \ \{\neg A, \neg C, \neg D\} \}$$

Step 1: A := true

$$\{\neg B, C, D\}, \ \{\neg B, \neg D\}, \ \{B, C, D\}, \ \{\neg B, \neg C\}, \ \{\neg C, \neg D\}$$

Backtrack to step 2: B := false

$$\Phi := \{ \{A, B, \neg C\}, \ \{\neg B, C, D\}, \ \{\neg A, \neg B, \neg D\}, \ \{B, C, D\},$$
$$\{\neg A, \neg B, \neg C\}, \ \{\neg A, \neg C, \neg D\} \}$$

Step 1: A := true

$$\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$$

Backtrack to step 2: B :=false

$$\{C,D\}, \{\neg C, \neg D\}$$

Step 3: C := true

$$\begin{split} \Phi \coloneqq \big\{ \{A, B, \neg C\}, \ \{\neg B, C, D\}, \ \{\neg A, \neg B, \neg D\}, \ \{B, C, D\}, \\ \big\{ \neg A, \neg B, \neg C\}, \ \big\{ \neg A, \neg C, \neg D \big\} \big\} \end{split}$$

Step 1: A := true

$$\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$$

Backtrack to step 2: B := false

$$\{C,D\}, \{\neg C, \neg D\}$$

Step 3: C := true

$$\{\neg D\}$$
 satisfiable

Solution: A = true, B = false, C = true, D = false

The Satisfiability Problem

Theorem

3-SAT (satisfiability for formulae in 3-CNF) is NP-complete.

Turing machine $\mathcal{M} = \langle Q, \Sigma, \Delta, q_0, F_+, F_- \rangle$

- Q set of states
- Σ tape alphabet
- Δ set of transitions $\langle p, a, b, m, q \rangle \in Q \times \Sigma \times \Sigma \times \{-1, 0, 1\} \times Q$
- q_0 initial state
- F_+ accepting states
- F_{-} rejecting states

nondeterministic, runtime bounded by the polynomial r(n)

Turing machine $\mathcal{M} = \langle Q, \Sigma, \Delta, q_0, F_+, F_- \rangle$

Q set of states

 Σ tape alphabet

 Δ set of transitions $\langle p, a, b, m, q \rangle \in Q \times \Sigma \times \Sigma \times \{-1, 0, 1\} \times Q$

 q_0 initial state

 F_+ accepting states

 F_{-} rejecting states

nondeterministic, runtime bounded by the polynomial r(n)

Encoding in PL

 $S_{t,q}$ state q at time t $H_{t,k}$ head in field k at time t $W_{t,k,a}$ letter a in field k at time t

$$\varphi_w \coloneqq \bigwedge_{t < r(n)} \left[ADM_t \wedge INIT \wedge TRANS_t \wedge ACC \right]$$

 $S_{t,q}$ state q at time t $H_{t,k}$ head in field k at time t $W_{t,k,a}$ letter a in field k at time t

Admissibility formula

$$\begin{split} \text{ADM}_t \coloneqq \bigwedge_{p \neq q} \left[\neg S_{t,p} \vee \neg S_{t,q} \right] & \text{unique state} \\ & \wedge \bigwedge_{k \neq l} \left[\neg H_{t,k} \vee \neg H_{t,l} \right] & \text{unique head position} \\ & \wedge \bigwedge_{k} \bigwedge_{a \neq b} \left[\neg W_{t,k,a} \vee \neg W_{t,k,b} \right] & \text{unique letter} \end{split}$$

 $S_{t,q}$ state q at time t

 $H_{t,k}$ head in field k at time t $W_{t,k,a}$ letter a in field k at time t

Initialisation formula for input: $a_0 \dots a_{n-1}$

$$\begin{split} \text{INIT} &\coloneqq S_{\text{o},q_{\text{o}}} & \text{initial state} \\ & \wedge H_{\text{o},\text{o}} & \text{initial head position} \\ & \wedge \bigwedge_{k < n} W_{\text{o},k,a_k} \wedge \bigwedge_{n \le k \le r(n)} W_{\text{o},k,\square} & \text{initial tape content} \end{split}$$

Acceptance formula

$$ACC := \bigvee_{q \in F_+} \bigvee_{t \le r(n)} S_{t,q} \qquad \text{accepting state}$$

 $S_{t,q}$ state q at time t $H_{t,k}$ head in field k at time t $W_{t,k,a}$ letter a in field k at time t

 $k \le r(n) \ a \in \Sigma$

Transition formula

$$\begin{aligned} \text{TRANS}_t &\coloneqq \bigvee_{\langle p,a,b,m,q \rangle \in \Delta} \bigvee_{k \leq r(n)} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \wedge \\ S_{t+1,q} \wedge H_{t+1,k-m} \wedge W_{t+1,k,b} \right] \\ &\quad \text{effect of transition} \\ & \wedge \bigwedge \bigwedge \left[\neg H_{t,k} \wedge W_{t,k,a} \rightarrow W_{t+1,k,a} \right] \end{aligned}$$

rest of tape remains unchanged

$$\begin{aligned} \text{TRANS}_t \coloneqq \bigvee_{\langle p,a,b,m,q \rangle \in \Delta} \bigvee_{k \le r(n)} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \wedge \right. \\ \left. S_{t+1,q} \wedge H_{t+1,k+m} \wedge W_{t+1,k,b} \right] \wedge \dots \end{aligned}$$

$$\begin{aligned} \text{TRANS}_t \coloneqq \bigvee_{\langle p,a,b,m,q \rangle \in \Delta} \bigvee_{k \le r(n)} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \wedge \right. \\ \left. S_{t+1,q} \wedge H_{t+1,k+m} \wedge W_{t+1,k,b} \right] \wedge \dots \end{aligned}$$

equivalently:

$$\bigwedge_{k \le r(n)} \bigwedge_{p \in Q} \bigwedge_{a \in \Sigma} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \to \bigvee_{q \in TS(p,a)} S_{t+1,q} \right]$$

$$TS(p,a) := \{ q \in Q \mid \langle p, a, b, m, q \rangle \in \Delta \}$$

$$\begin{split} \text{TRANS}_t \coloneqq \bigvee_{\langle p, a, b, m, q \rangle \in \Delta} \bigvee_{k \le r(n)} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \wedge \right. \\ \left. S_{t+1,q} \wedge H_{t+1,k+m} \wedge W_{t+1,k,b} \right] \wedge \dots \end{split}$$

equivalently:

$$\bigwedge_{k \leq r(n)} \bigwedge_{p \in Q} \bigwedge_{a \in \Sigma} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \to \bigvee_{q \in TS(p,a)} S_{t+1,q} \right]
\wedge \bigwedge_{k \leq r(n)} \bigwedge_{p,q \in Q} \bigwedge_{a \in \Sigma} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \wedge S_{t+1,q} \to \bigvee_{m \in TH(p,a,q)} H_{t+1,k+m} \right]$$

$$TH(p, a, q) \coloneqq \{ m \mid \langle p, a, b, m, q \rangle \in \Delta \}$$

$$\mathsf{TRANS}_t \coloneqq \bigvee_{\langle p, a, b, m, q \rangle \in \Delta} \bigvee_{k \le r(n)} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \wedge S_{t+1,q} \wedge H_{t+1,k+m} \wedge W_{t+1,k,b} \right] \wedge \dots$$

equivalently:

$$\bigwedge_{k \leq r(n)} \bigwedge_{p \in Q} \bigwedge_{a \in \Sigma} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \rightarrow \bigvee_{q \in TS(p,a)} S_{t+1,q} \right]$$

$$\wedge \bigwedge_{k \leq r(n)} \bigwedge_{p,q \in Q} \bigwedge_{a \in \Sigma} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \wedge S_{t+1,q} \rightarrow \bigvee_{m \in TH(p,a,q)} H_{t+1,k+m} \right]$$

$$\wedge \bigwedge_{k \leq r(n)} \bigwedge_{p,q \in Q} \bigwedge_{a \in \Sigma} \bigwedge_{m \in \{-1,0,1\}} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \wedge S_{t+1,q} \wedge H_{t+1,k+m} \rightarrow \bigvee_{m \in TH(p,a,q)} W_{t+1,k+m} \right]$$

$$TW(p,a,m,q) := \left\{ b \in Q \mid \langle p,a,b,m,q \rangle \in \Delta \right\}$$

Properties of φ_w

- ▶ It is in CNF.
- It has length $\sim r(n)^3$.
- ▶ It is satisfiable if, and only if, the Turing machine accepts *w*.

Consequently, the satisfiability problem for PL-formulae in CNF is NP-complete.

Properties of φ_w

- ▶ It is in CNF.
- It has length $\sim r(n)^3$.
- ▶ It is satisfiable if, and only if, the Turing machine accepts *w*.

Consequently, the satisfiability problem for PL-formulae in CNF is NP-complete.

Reduction to 3-CNF

$$\{L_0, L_1, L_2, \dots, L_n\} \mapsto \{L_0, L_1, X\}, \{\neg X, L_2, \dots, L_n\}$$
(X new variable)

Resolution

Resolution

Resolution Step

The **resolvent** of two clauses

$$C = \{L, A_0, ..., A_m\}$$
 and $C' = \{\neg L, B_0, ..., B_n\}$

is the clause

$$\{A_{o},\ldots,A_{m},B_{o},\ldots,B_{n}\}.$$

Lemma

Let C be the resolvent of two clauses in Φ . Then

$$\Phi \vDash \Phi \cup \{C\}.$$

The Resolution Method

Observation

If Φ contains the empty clause \varnothing , then Φ is not satisfiable.

Resolution Method

Input: a set of clauses Φ

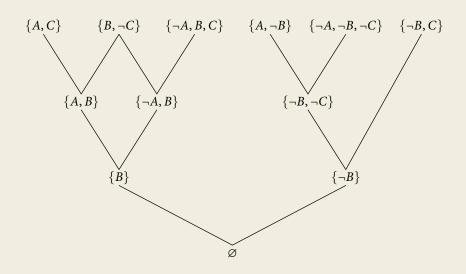
Output: true if Φ is satisfiable, false otherwise.

```
RM(\Phi)
add to \Phi all possible resolvents
repeat until no new clauses are generated
if \emptyset \in \Phi then
return false
else
return true
```

Theorem

The resolution method for propositional logic is sound and complete.

Example



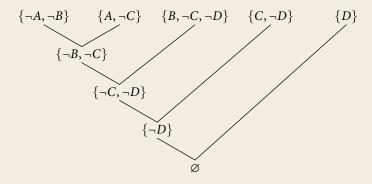
Davis-Putnam Algorithm

```
Input: a set of clauses \Phi
Output: true if \Phi is satisfiable, false otherwise.
DP(\Phi)
   remove all tautological clauses from \Phi
   if \Phi = \emptyset then
     return true
   if \Phi = \{\emptyset\} then
      return false
   select a variable X
   add to \Phi all resolvents over X
   remove all clauses containing X or \neg X from \Phi
   repeat
```

Horn formulae

Linear Resolution

A **linear resolution** is a sequence of resolution steps where in each step the resolvent of the previous step is used.



Horn formulae and linear resolution

Horn formulae

A Horn clause is a clause *C* that contains at most one positive literal.

Example

$$A_{o} \wedge \cdots \wedge A_{n} \rightarrow B \equiv \{\neg A_{o}, \dots, \neg A_{n}, B\}$$

Horn formulae and linear resolution

Horn formulae

A Horn clause is a clause *C* that contains at most one positive literal.

Example

$$A_0 \wedge \cdots \wedge A_n \to B \equiv \{\neg A_0, \dots, \neg A_n, B\}$$

Theorem

A set of Horn clauses is unsatisfiable if, and only if, one can use linear resolution to derive the empty clause from it.

SLD Resolution

Linear resolution where the clauses are sequences instead of sets and we always resolve the leftmost literal of the current clause.

Minimal models

Lemma

Every satisfiable set of Horn-formulae has a minimal model.

Minimal models

Lemma

Every satisfiable set of Horn-formulae has a minimal model.

Algorithm to compute it:

```
Input: \Phi set of Horn-formulae T := \emptyset repeat for all A_0 \land \cdots \land A_{n-1} \to B \in \Phi do if A_0, \ldots, A_{n-1} \in T then T := T \cup \{B\} until T does not change anymore
```

Minimal models

Lemma

Every satisfiable set of Horn-formulae has a minimal model.

Algorithm to compute it:

```
Input: \Phi set of Horn-formulae T := \emptyset

repeat

for all A_0 \wedge \cdots \wedge A_{n-1} \to B \in \Phi do

if A_0, \dots, A_{n-1} \in T then

T := T \cup \{B\}

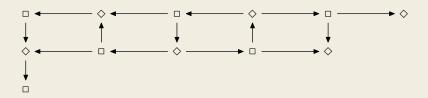
until T does not change anymore
```

Theorem

Satisfiability for sets of Horn-formulae can be checked in linear time.

Finite Games $\mathcal{G} = \langle V_{\diamondsuit}, V_{\square}, E \rangle$

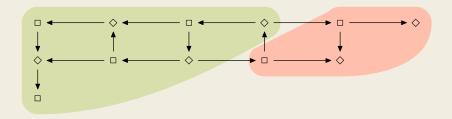
Players \diamondsuit and \square



Winning regions: W_{\diamondsuit} , W_{\square}

Finite Games $\mathcal{G} = \langle V_{\diamondsuit}, V_{\square}, E \rangle$

Players \diamondsuit and \square



Winning regions: W_{\diamondsuit} , W_{\square}

Reduction

positions

$$V_{\diamondsuit}$$
 = variables $\langle A \rangle$ and V_{\square} = formulae $[A_{o} \wedge \cdots \wedge A_{n-1} \rightarrow B]$

edges

$$\langle B \rangle \quad \rightarrow \quad [A_0 \wedge \cdots \wedge A_{n-1} \rightarrow B]$$

$$[A_0 \wedge \cdots \wedge A_{n-1} \rightarrow B] \quad \rightarrow \quad \langle A_i \rangle$$

Lemma

A variable A belongs to W_{\diamondsuit} iff it is true in the minimal model.

$$B \wedge C \to A$$
 $A \wedge D \to B$ $F \to C$
 $D \wedge E \to A$ $C \wedge F \to B$ $1 \to F$

$$[F \to C] \longleftarrow \langle C \rangle \longleftarrow [B \land C \to A] \longleftarrow \langle A \rangle \longrightarrow [D \land E \to A] \longrightarrow \langle E \rangle$$

 $[1 \rightarrow F]$

 $\langle F \rangle \longleftarrow [C \land F \to B] \longleftarrow \langle B \rangle \longrightarrow [A \land D \to B] \longrightarrow \langle D \rangle$

$$F \to C] \longrightarrow (C) \longrightarrow [R \land C \to A] \longrightarrow (C)$$

Simple Algorithm

```
Win(v, \sigma)
   if v \in V_{\sigma} then
       if there is an edge v \rightarrow u with Win(u, \sigma) then
           return true
       else
           return false
                                                                          (* \overline{\Diamond} := \Box \overline{\Box} := \Diamond *)
   if v \in V_{\overline{\sigma}} then
       if for every edge v \rightarrow u we have Win(u, \sigma) then
           return true
       else
           return false
```

Linear Algorithm

```
Input: game \langle V_{\triangle}, V_{\square}, E \rangle
forall v \in V do
   win[\nu] := \bot
                              (* winner of the position *)
   P[v] := \emptyset
                              (* set of predecessors of \nu *)
   n[v] := 0
                              (* number of successors of \nu *)
end
forall \langle u, v \rangle \in E do
   P[v] := P[v] \cup \{u\}
   n[u] := n[u] + 1
end
forall v \in V_{\triangle} do
   if n[v] = o then Propagate(v, \Box)
forall v \in V_{\square} do
   if n[v] = o then Propagate(v, \diamondsuit)
return win
```

```
procedure Propagate(v, \sigma) =

if win[v] \neq \bot then return

win[v] := \sigma

forall u \in P[v] do

n[u] := n[u] - 1

if u \in V_{\sigma} or n[u] = 0 then Propagate(u, \sigma)

end

end
```