IA008: Computational Logic 6. Modal Logic

Achim Blumensath blumens@fi.muni.cz

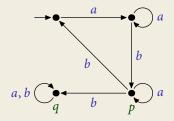
Faculty of Informatics, Masaryk University, Brno

Basic Concepts

Transition Systems

directed graph $\mathfrak{S} = \langle S, (E_a)_{a \in A}, (P_i)_{i \in I}, s_0 \rangle$ with

- states S
- ▶ initial state $s_0 \in S$
- edge relations E_a with edge colours $a \in A$ ('actions')
- ▶ unary predicates P_i with vertex colours $i \in I$ ('properties')



Modal logic

Propositional logic with modal operators

- $\langle a \rangle \varphi$ 'there exists an *a*-successor where φ holds'
- $[a]\varphi$ ' φ holds in every *a*-successor'

Notation: $\Diamond \varphi$, $\Box \varphi$ if there are no edge labels

Formal semantics

$$\mathfrak{S}, s \vDash P$$
 : iff $s \in P$
 $\mathfrak{S}, s \vDash \varphi \land \psi$: iff $\mathfrak{S}, s \vDash \varphi$ and $\mathfrak{S}, s \vDash \psi$

$$\mathfrak{S}, s \vDash \varphi \lor \psi$$
 : iff $\mathfrak{S}, s \vDash \varphi$ or $\mathfrak{S}, s \vDash \psi$

$$\mathfrak{S}, s \vDash \neg \varphi$$
 : iff $\mathfrak{S}, s \not\vDash \varphi$

$$\mathfrak{S}, s \models \langle a \rangle \varphi$$
 : iff there is $s \to a^t t$ such that $\mathfrak{S}, t \models \varphi$

$$\mathfrak{S}, s \vDash [a] \varphi$$
 : iff for all $s \to a$, we have $\mathfrak{S}, t \vDash \varphi$

Examples

```
P \land \diamondsuit Q 'The state is in P and there exists a transition to Q.' [a]\bot 'The state has no outgoing a-transition.'
```

Interpretations

- Temporal Logic talks about time:
 - states: points in time (discrete/continuous)
 - $\Diamond \varphi$ 'sometime in the future φ holds'
 - $\Box \varphi$ 'always in the future φ holds'
- Epistemic Logic talks about knowledge:
 - states: possible worlds
 - $\Diamond \varphi$ ' φ might be true'
 - $\Box \varphi$ ' φ is certainly true'

system
$$\mathfrak{S} = \langle S, <, \bar{P} \rangle$$

▶ "P never holds."

system
$$\mathfrak{S} = \langle S, <, \bar{P} \rangle$$

▶ "*P* never holds."

$$\neg \diamondsuit P$$

▶ "After every *P* there is some *Q*."

system
$$\mathfrak{S} = \langle S, <, \bar{P} \rangle$$

▶ "P never holds."

$$\neg \diamondsuit P$$

► "After every *P* there is some *Q*."

$$\Box(P\to\diamondsuit Q)$$

"Once P holds, it holds forever."

system
$$\mathfrak{S} = \langle S, <, \bar{P} \rangle$$

▶ "P never holds."

$$\neg \diamondsuit P$$

► "After every *P* there is some *Q*."

$$\Box \big(P \to \diamondsuit Q\big)$$

• "Once *P* holds, it holds forever."

$$\Box(P \to \Box P)$$

► "There are infinitely many *P*."

system
$$\mathfrak{S} = \langle S, <, \bar{P} \rangle$$

▶ "P never holds."

$$\neg \diamondsuit P$$

► "After every *P* there is some *Q*."

$$\Box(P \to \Diamond Q)$$

▶ "Once *P* holds, it holds forever."

$$\Box(P \to \Box P)$$

► "There are infinitely many P." $\Box \diamondsuit P$

Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a formula $\varphi^*(x)$ of first-order logic such that

$$\mathfrak{S}, s \vDash \varphi$$
 iff $\mathfrak{S} \vDash \varphi^*(s)$.

Proof

Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a formula $\varphi^*(x)$ of first-order logic such that

$$\mathfrak{S}, s \vDash \varphi$$
 iff $\mathfrak{S} \vDash \varphi^*(s)$.

Proof

$$P^* := P(x)$$

$$(\varphi \wedge \psi)^* := \varphi^*(x) \wedge \psi^*(x)$$

$$(\varphi \vee \psi)^* := \varphi^*(x) \vee \psi^*(x)$$

$$(\neg \varphi)^* := \neg \varphi^*(x)$$

$$(\langle a \rangle \varphi)^* := \exists y [E_a(x, y) \wedge \varphi^*(y)]$$

$$([a]\varphi)^* := \forall y [E_a(x, y) \rightarrow \varphi^*(y)]$$

Bisimulation

 $\mathfrak S$ and $\mathfrak T$ transition systems

$$Z \subseteq S \times T$$
 is a **bisimulation** if, for all $\langle s, t \rangle \in Z$,

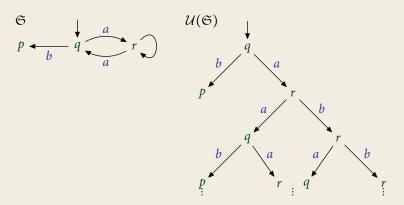
(local)
$$s \in P \iff t \in P$$

(forth) for every
$$s \to a s'$$
, exists $t \to a t'$ with $\langle s', t' \rangle \in Z$,

(back) for every
$$t \to a t'$$
, exists $s \to a s'$ with $\langle s', t' \rangle \in Z$.

 \mathfrak{S} , s and \mathfrak{T} , t are bisimilar if there is a bisimulation Z with $\langle s, t \rangle \in Z$.

Unravelling



Lemma

 $\mathfrak S$ and $\mathcal U(\mathfrak S)$ are bisimilar.

Bisimulation invariance

Theorem

Two finite transition systems $\mathfrak S$ and $\mathfrak T$ are bisimilar if, and only if,

$$\mathfrak{S} \vDash \varphi \quad \Leftrightarrow \quad \mathfrak{T} \vDash \varphi$$
, for every modal formula φ .

Definition

A formula $\varphi(x)$ is **bisimulation invariant** if

$$\mathfrak{S}, s \sim \mathfrak{T}, t$$
 implies $\mathfrak{S} \models \varphi(s) \Leftrightarrow \mathfrak{T} \models \varphi(t)$.

Theorem

A first-order formula φ is equivalent to a modal formula if, and only if, it is bisimulation invariant.

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

Models

transistion systems where each state s is labelled with a $\Sigma\text{-structure}\,\mathfrak{A}_s$ such that

$$s \to^a t$$
 implies $A_s \subseteq A_t$

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

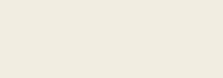
Models

transistion systems where each state s is labelled with a $\Sigma\text{-structure}\,\mathfrak{A}_s$ such that

$$s \to^a t$$
 implies $A_s \subseteq A_t$

Examples

- ▶ $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$ is valid.
- ▶ $\forall x \Box \varphi(x) \rightarrow \Box \forall x \varphi(x)$ is not valid.



Tableaux

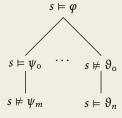
Tableau Proofs

Statements

$$s \vDash \varphi$$
 $s \not\vDash \varphi$ $s \to^a t$

s,t state labels, φ a modal formula

Rules



Tableaux

Construction

A **tableau** for a formula φ is constructed as follows:

- start with $s_0 \not\models \varphi$
- choose a branch of the tree
- choose a statement $s = \psi/s \neq \psi$ on the branch
- choose a rule with head $s = \psi/s \neq \psi$
- add it at the bottom of the branch
- repeat until every branch contains both statements $s \models \psi$ and $s \not\models \psi$ for some formula ψ

Tableaux

Construction

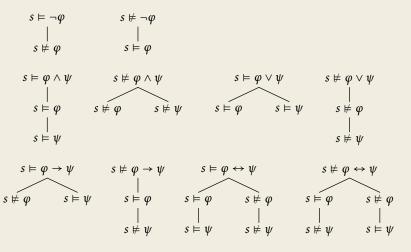
A **tableau** for a formula φ is constructed as follows:

- start with $s_0 \not\models \varphi$
- choose a branch of the tree
- choose a statement $s = \psi/s \neq \psi$ on the branch
- choose a rule with head $s = \psi/s \neq \psi$
- add it at the bottom of the branch
- repeat until every branch contains both statements $s \models \psi$ and $s \not\models \psi$ for some formula ψ

Tableaux with premises Γ

• choose a branch, a state *s* on the branch, a premise $\psi \in \Gamma$, and add $s \models \psi$ to the branch

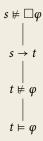
Rules



Rules

t a new state, t' every state with entry $s \rightarrow^a t'$ on the branch, c a new constant symbol, t an arbitrary term

Example $\varphi \vDash \Box \varphi$



Example $\vDash \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$

$$s \not\models \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$

$$| s \models \Box(\varphi \to \psi)$$

$$| s \not\models \Box \varphi$$

$$| c \models \varphi$$

$$| c \models \varphi$$

$$| c \models \varphi \to \psi$$

Example $\models \Box \forall x \varphi \rightarrow \forall x \Box \varphi$

$$\begin{array}{c|c}
s \not\models \Box \forall x \varphi \to \forall x \Box \varphi \\
 & \downarrow \\
 & s \models \Box \forall x \varphi \\
 & \downarrow \\
 & s \not\models \forall x \Box \varphi \\
 & \downarrow \\
 & s \mapsto t \\
 & \downarrow \\
 & t \not\models \varphi[x \mapsto c] \\
 & t \models \forall x \varphi \\
 & \downarrow \\
 & t \models \varphi[x \mapsto c]
\end{array}$$

Soundness and Completeness

Consequence

 ψ is a **consequence** of Γ if, and only if, for all transition systems \mathfrak{S} ,

$$\mathfrak{S}, s \vDash \varphi$$
, for all $s \in S$ and $\varphi \in \Gamma$,

implies that

$$\mathfrak{S}, s \models \psi$$
, for all $s \in S$.

Soundness and Completeness

Consequence

 ψ is a **consequence** of Γ if, and only if, for all transition systems \mathfrak{S} ,

$$\mathfrak{S}, s \models \varphi$$
, for all $s \in S$ and $\varphi \in \Gamma$,

implies that

$$\mathfrak{S}, s \models \psi$$
, for all $s \in S$.

Theorem

A modal formula φ is a consequence of Γ if, and only if, there exists a tableau T for φ with premises Γ where every branch is contradictory.

Temporal Logics

Linear Temporal Logic (LTL)

Speaks about paths. $P \longrightarrow \bullet \longrightarrow P, Q \longrightarrow Q \longrightarrow \bullet \longrightarrow \cdots$

Syntax

- ▶ atomic predicates *P*, *Q*, . . .
- ▶ boolean operations ∧, ∨, ¬
- next $X\varphi$
- until $\varphi U \psi$
- finally $F\varphi := \top U\varphi$
- generally $G\varphi := \neg F \neg \varphi$

Examples

FP a state in P is reachable

GFP we can reach infinitely many states in P $(\neg P)U(P \land Q)$ the first reachable state in P is also in Q

Linear Temporal Logic (LTL)

Theorem

Let *L* be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- L can be defined by a star-free regular expression.

Computation Tree Logic (CTL and CTL*)

Applies LTL-formulae to the branches of a tree.

Syntax (of CTL*)

• state formulae φ :

$$\varphi := P \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \neg \varphi \mid A\psi \mid E\psi$$

• path formulae ψ :

$$\psi ::= \varphi \mid \psi \land \psi \mid \psi \lor \psi \mid \neg \psi \mid X\psi \mid \psi U\psi \mid F\psi \mid G\psi$$

Examples

EFP a state in *P* is reachable

AFP every branch contains a state in *P*

EGFP there is a branch with infinitely many *P*

EGEFP there is a branch such that we can reach P from every

of its states

The modal μ -calculus (L_{μ})

Adds recursion to modal logic.

Syntax

$$\varphi ::= P \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu X. \varphi(X) \mid \nu X. \varphi(X)$$

Examples

$$\mu X(P \lor \diamondsuit X)$$
 a state in P is reachable $\nu X(P \land \diamondsuit X)$ there is a branch with all states in P

The modal μ -calculus (L_{μ})

Theorem

A regular tree language can be defined in the modal μ -calculus if, and only if, it is bisimulation invariant.

Theorem

Satisfiability of μ -calculus formulae is decidable.

(The algorithm uses tree automata and parity games.)

Description Logics

Description Logic

General Idea

Extend Modal Logic with operations that are not bisimulation-invariant.

Applications

Knowledge representation, deductive databases, system modelling, semantic web

Ingredients

- ▶ individuals: elements (Anna, John, Paul, Marry,...)
- concepts: unary predicates (person, male, female,...)
- roles: binary relations (has_child, is_married_to,...)
- TBox: terminology definitions
- ABox: assertions about the world

Example

TBox

```
man := person \land male
woman := person \land female
father := man \land \exists has\_child.person
mother := woman \land \exists has\_child.person
```

ABox

```
man(John)
man(Paul)
woman(Anna)
woman(Marry)
has_child(Anna, Paul)
is married to(Anna, John)
```

Syntax

Concepts

$$\varphi ::= P \mid \top \mid \bot \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \forall R\varphi \mid \exists R\varphi \mid (\geq nR) \mid (\leq nR)$$

Terminology axioms

$$\varphi \sqsubseteq \psi$$
 $\varphi \equiv \psi$

TBox Axioms of the form $P \equiv \varphi$.

Assertions

$$\varphi(a)$$
 $R(a,b)$

Extensions

- ▶ operations on roles: $R \cap S$, $R \cup S$, $R \circ S$, $\neg R$, R^+ , R^* , R^-
- extended number restrictions: $(\ge nR)\varphi$, $(\le nR)\varphi$

Algorithmic Problems

- Satisfiability: Is φ satisfiable?
- Subsumption: $\varphi \models \psi$?
- Equivalence: $\varphi \equiv \psi$?
- ▶ Disjointness: $\varphi \land \psi$ unsatisfiable?

All problems can be solved with standard methods like **tableaux** or **tree automata**.

Semantic Web: OWL (functional syntax)

```
Ontology(
  Class(pp:man complete
          intersectionOf(pp:person pp:male))
  Class(pp:woman complete
          intersectionOf(pp:person pp:female))
  Class(pp:father complete
          intersectionOf(pp:man
            restriction(pp:has_child pp:person)))
  Class(pp:mother complete
          intersectionOf(pp:woman
            restriction(pp:has_child pp:person)))
  Individual(pp:John type(pp:man))
  Individual(pp:Paul type(pp:man))
  Individual(pp:Anna type(pp:woman)
              value(pp:has_child pp:Paul)
               value(pp:is_married_to pp:John))
  Individual(pp:Marry type(pp:woman))
```