
IA : Computational Logic
. Modal Logic

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz


Basic Concepts



Transition Systems

directed graph S = ⟨S, (Ea)a∈A, (Pi)i∈I , s⟩ with

▸ states S

▸ initial state s ∈ S
▸ edge relations Ea with edge colours a ∈ A (‘actions’)

▸ unary predicates Pi with vertex colours i ∈ I (‘properties’)

a

b

b

b

a

aa, b

pq



Modal logic

Propositional logic with modal operators

▸ ⟨a⟩φ ‘there exists an a-successor where φ holds’

▸ [a]φ ‘φ holds in every a-successor’

Notation: ◇φ, ◻φ if there are no edge labels

Formal semantics

S, s ⊧ P : iff s ∈ P
S, s ⊧ φ ∧ ψ : iff S, s ⊧ φ andS, s ⊧ ψ

S, s ⊧ φ ∨ ψ : iff S, s ⊧ φ orS, s ⊧ ψ

S, s ⊧ ¬φ : iff S, s ⊭ φ

S, s ⊧ ⟨a⟩φ : iff there is s→a t such thatS, t ⊧ φ

S, s ⊧ [a]φ : iff for all s→a t , we haveS, t ⊧ φ



Examples

P ∧◇Q ‘te state is in P and there exists a transition to Q.’

[a]� ‘te state has no outgoing a-transition.’

Interpretations

▸ Temporal Logic talks about time:
▸ states: points in time (discrete/continuous)
▸ ◇φ ‘sometime in the future φ holds’
▸ ◻φ ‘always in the future φ holds’

▸ Epistemic Logic talks about knowledge:
▸ states: possible worlds
▸ ◇φ ‘φ might be true’
▸ ◻φ ‘φ is certainly true’



Examples: Temporal Logic

system S = ⟨S, <, P̄⟩

▸ “P never holds.”



Examples: Temporal Logic

system S = ⟨S, <, P̄⟩

▸ “P never holds.”

¬◇ P

▸ “A>er every P there is some Q.”



Examples: Temporal Logic

system S = ⟨S, <, P̄⟩

▸ “P never holds.”

¬◇ P

▸ “A>er every P there is some Q.”

◻(P →◇Q)

▸ “Once P holds, it holds forever.”



Examples: Temporal Logic

system S = ⟨S, <, P̄⟩

▸ “P never holds.”

¬◇ P

▸ “A>er every P there is some Q.”

◻(P →◇Q)

▸ “Once P holds, it holds forever.”

◻(P → ◻P)

▸ “tere are infinitely many P.”



Examples: Temporal Logic

system S = ⟨S, <, P̄⟩

▸ “P never holds.”

¬◇ P

▸ “A>er every P there is some Q.”

◻(P →◇Q)

▸ “Once P holds, it holds forever.”

◻(P → ◻P)

▸ “tere are infinitely many P.”

◻◇ P



Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a

formula φ∗(x) of first-order logic such that

S, s ⊧ φ iff S ⊧ φ∗(s) .

Proof



Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a

formula φ∗(x) of first-order logic such that

S, s ⊧ φ iff S ⊧ φ∗(s) .

Proof

P∗ ∶= P(x)

(φ ∧ ψ)∗ ∶= φ∗(x) ∧ ψ∗(x)

(φ ∨ ψ)∗ ∶= φ∗(x) ∨ ψ∗(x)

(¬φ)∗ ∶= ¬φ∗(x)

(⟨a⟩φ)∗ ∶= ∃y[Ea(x, y) ∧ φ∗(y)]

([a]φ)∗ ∶= ∀y[Ea(x, y)→ φ∗(y)]



Bisimulation

S and T transition systems

Z ⊆ S × T is a bisimulation if, for all ⟨s, t⟩ ∈ Z,
(local) s ∈ P ⇔ t ∈ P
(forth) for every s→a s′, exists t →a t′ with ⟨s′ , t′⟩ ∈ Z,
(back) for every t →a t′, exists s→a s′ with ⟨s′ , t′⟩ ∈ Z.

S, s and T, t are bisimilar if there is a bisimulation Z with ⟨s, t⟩ ∈ Z.

s

s
′

t

t
′

a a

Z

Z



Unravelling

qp r
b

a

a

S

q

p r

q r

p r q r

b a

a b

b a a b

U(S)

⋮ ⋮⋮

Lemma

S and U(S) are bisimilar.



Bisimulation invariance

teorem

Two finite transition systemsS and T are bisimilar if, and only if,

S ⊧ φ ⇔ T ⊧ φ , for every modal formula φ .

Definition

A formula φ(x) is bisimulation invariant if

S, s ∼ T, t implies S ⊧ φ(s)⇔ T ⊧ φ(t) .

teorem

A first-order formula φ is equivalent to a modal formula if, and only

if, it is bisimulation invariant.



First-Order Modal Logic

Syntax

first-order logic with modal operators ⟨a⟩φ and [a]φ



First-Order Modal Logic

Syntax

first-order logic with modal operators ⟨a⟩φ and [a]φ

Models

transistion systems where each state s is labelled with a Σ-structureAs

such that

s→a t implies As ⊆ At



First-Order Modal Logic

Syntax

first-order logic with modal operators ⟨a⟩φ and [a]φ

Models

transistion systems where each state s is labelled with a Σ-structureAs

such that

s→a t implies As ⊆ At

Examples

▸ ◻∀xφ(x)→ ∀x ◻ φ(x) is valid.

▸ ∀x ◻ φ(x)→ ◻∀xφ(x) is not valid.



Tableaux



Tableau Proofs

Statements

s ⊧ φ s ⊭ φ s →a t

s, t state labels, φ a modal formula

Rules

s ⊧ φ

s ⊧ ψ
. . .

s ⊭ ϑ

s ⊭ ψm s ⊧ ϑn



Tableaux

Construction

A tableau for a formula φ is constructed as follows:

▸ start with s ⊭ φ

▸ choose a branch of the tree

▸ choose a statement s ⊧ ψ/s ⊭ ψ on the branch

▸ choose a rule with head s ⊧ ψ/s ⊭ ψ
▸ add it at the bottom of the branch

▸ repeat until every branch contains both statements s ⊧ ψ and

s ⊭ ψ for some formula ψ



Tableaux

Construction

A tableau for a formula φ is constructed as follows:

▸ start with s ⊭ φ

▸ choose a branch of the tree

▸ choose a statement s ⊧ ψ/s ⊭ ψ on the branch

▸ choose a rule with head s ⊧ ψ/s ⊭ ψ
▸ add it at the bottom of the branch

▸ repeat until every branch contains both statements s ⊧ ψ and

s ⊭ ψ for some formula ψ

Tableaux with premises Γ

▸ choose a branch, a state s on the branch, a premise ψ ∈ Γ, and add
s ⊧ ψ to the branch



Rules

s ⊧ ¬φ

s ⊭ φ

s ⊭ ¬φ

s ⊧ φ

s ⊧ φ ∧ ψ

s ⊧ φ

s ⊧ ψ

s ⊭ φ ∧ ψ

s ⊭ φ s ⊭ ψ

s ⊧ φ ∨ ψ

s ⊧ φ s ⊧ ψ

s ⊭ φ ∨ ψ

s ⊭ φ

s ⊭ ψ

s ⊧ φ → ψ

s ⊭ φ s ⊧ ψ

s ⊭ φ → ψ

s ⊧ φ

s ⊭ ψ

s ⊧ φ↔ ψ

s ⊧ φ

s ⊧ ψ

s ⊭ φ

s ⊭ ψ

s ⊭ φ↔ ψ

s ⊧ φ

s ⊭ ψ

s ⊭ φ

s ⊧ ψ



Rules

s ⊧ ⟨a⟩φ

s →a t

t ⊧ φ

s ⊭ ⟨a⟩φ

t′ ⊭ φ

s ⊧ [a]φ

t′ ⊧ φ

s ⊭ [a]φ

s →a t

t ⊭ φ

s ⊧ ∀xφ

s ⊧ φ[x ↦ t]

s ⊭ ∀xφ

s ⊭ φ[x ↦ c]

s ⊧ ∃xφ

s ⊧ φ[x ↦ c]

s ⊭ ∃xφ

s ⊭ φ[x ↦ t]

t a new state, t′ every state with entry s→a t′ on the branch,

c a new constant symbol, t an arbitrary term



Example φ ⊧ ◻φ

s ⊭ �φ

s → t

t ⊭ φ

t ⊧ φ



Example ⊧ ◻(φ → ψ) → (◻φ → ◻ψ)

s ⊭ �(φ → ψ)→ (�φ → �ψ)

s ⊧ �(φ → ψ)

s ⊭ �φ → �ψ

s ⊧ �φ

s ⊭ �ψ

s → t

t ⊭ ψ

t ⊧ φ

t ⊧ φ → ψ

t ⊭ φ t ⊧ ψ



Example ⊧ ◻∀xφ → ∀x ◻ φ

s ⊭ �∀xφ → ∀x�φ

s ⊧ �∀xφ

s ⊭ ∀x�φ

s ⊭ �φ[x ↦ c]

s → t

t ⊭ φ[x ↦ c]

t ⊧ ∀xφ

t ⊧ φ[x ↦ c]



Soundness and Completeness

Consequence

ψ is a consequence of Γ if, and only if, for all transition systemsS,

S, s ⊧ φ , for all s ∈ S and φ ∈ Γ ,

implies that

S, s ⊧ ψ , for all s ∈ S .



Soundness and Completeness

Consequence

ψ is a consequence of Γ if, and only if, for all transition systemsS,

S, s ⊧ φ , for all s ∈ S and φ ∈ Γ ,

implies that

S, s ⊧ ψ , for all s ∈ S .

teorem

A modal formula φ is a consequence of Γ if, and only if, there exists a

tableau T for φ with premises Γ where every branch is contradictory.



Temporal Logics



Linear Temporal Logic (LTL)

Speaks about paths. P Ð→ ●Ð→ ●Ð→ P,QÐ→ QÐ→ ●Ð→⋯

Syntax

▸ atomic predicates P,Q, . . .

▸ boolean operations ∧,∨,¬

▸ next Xφ

▸ until φUψ

▸ finally Fφ ∶= ⊺Uφ

▸ generally Gφ ∶= ¬F¬φ

Examples

FP a state in P is reachable

GFP we can reach infinitely many states in P

(¬P)U(P ∧Q) the first reachable state in P is also in Q



Linear Temporal Logic (LTL)

teorem

Let L be a set of paths. te following statements are equivalent :

▸ L can be defined in LTL.

▸ L can be defined in first-order logic.

▸ L can be defined by a star-free regular expression.



Computation Tree Logic (CTL and CTL*)

Applies LTL-formulae to the branches of a tree.

Syntax (of CTL*)

▸ state formulae φ :

φ ∶∶= P ∣ φ ∧ φ ∣ φ ∨ φ ∣ ¬φ ∣ Aψ ∣ Eψ

▸ path formulae ψ :

ψ ∶∶= φ ∣ ψ ∧ ψ ∣ ψ ∨ ψ ∣ ¬ψ ∣ Xψ ∣ ψUψ ∣ Fψ ∣ Gψ

Examples

EFP a state in P is reachable

AFP every branch contains a state in P

EGFP there is a branch with infinitely many P

EGEFP there is a branch such that we can reach P from every

of its states



te modal µ-calculus (Lµ)

Adds recursion to modal logic.

Syntax

φ ∶∶= P ∣ φ ∧ φ ∣ φ ∨ φ ∣ ¬φ ∣ ⟨a⟩φ ∣ [a]φ ∣ µX.φ(X) ∣ νX.φ(X)

Examples

µX(P ∨◇X) a state in P is reachable

νX(P ∧◇X) there is a branch with all states in P



te modal µ-calculus (Lµ)

teorem

A regular tree language can be defined in the modal µ-calculus if, and

only if, it is bisimulation invariant.

teorem

Satisfiability of µ-calculus formulae is decidable.

(te algorithm uses tree automata and parity games.)



Description Logics



Description Logic

General Idea

Extend Modal Logic with operations that are not

bisimulation-invariant.

Applications

Knowledge representation, deductive databases, system modelling,

semantic web

Ingredients

▸ individuals: elements (Anna, John, Paul, Marry,. . . )

▸ concepts: unary predicates (person, male, female,. . . )

▸ roles: binary relations (has_child, is_married_to,. . . )

▸ TBox: terminology definitions

▸ ABox: assertions about the world



Example

TBox

man ∶= person ∧male

woman ∶= person ∧ female

father ∶= man ∧ ∃has_child.person

mother ∶= woman ∧ ∃has_child.person

ABox

man(John)

man(Paul)

woman(Anna)

woman(Marry)

has_child(Anna, Paul)

is_married_to(Anna, John)



Syntax

Concepts

φ ∶∶= P ∣ ⊺ ∣ � ∣ ¬φ ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∀Rφ ∣ ∃Rφ ∣ (≥nR) ∣ (≤nR)

Terminology axioms

φ ⊑ ψ φ ≡ ψ

TBox Axioms of the form P ≡ φ.

Assertions

φ(a) R(a, b)

Extensions

▸ operations on roles: R ∩ S, R ∪ S, R ○ S, ¬R, R+, R∗, R−

▸ extended number restrictions: (≥nR)φ, (≤nR)φ



Algorithmic Problems

▸ Satisfiability: Is φ satisfiable?

▸ Subsumption : φ ⊧ ψ?

▸ Equivalence: φ ≡ ψ?
▸ Disjointness: φ ∧ψ unsatisfiable?

All problems can be solved with standard methods like tableaux or

tree automata.



SemanticWeb: OWL (functional syntax)

Ontology(

Class(pp:man complete

intersectionOf(pp:person pp:male))

Class(pp:woman complete

intersectionOf(pp:person pp:female))

Class(pp:father complete

intersectionOf(pp:man

restriction(pp:has_child pp:person)))

Class(pp:mother complete

intersectionOf(pp:woman

restriction(pp:has_child pp:person)))

Individual(pp:John type(pp:man))

Individual(pp:Paul type(pp:man))

Individual(pp:Anna type(pp:woman)

value(pp:has_child pp:Paul)

value(pp:is_married_to pp:John))

Individual(pp:Marry type(pp:woman))

)


