IA008: Computational Logic
6. Modal Logic

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Basic Concepts

Transition Systems

directed graph & = (S, (Eq)aeas (P,-),-d,so) with
» states S
» initial state s, € S
» edge relations E, with edge colours a € A (‘actions’)

» unary predicates P; with vertex colours i € I (‘properties’)
_..—a>.3 a

b b

a,b C0<—QD a
g b p

Modal logic

Propositional logic with modal operators

» (a)e ‘there exists an a-successor where ¢ holds’

» [ale ‘¢ holds in every a-successor’

Notation: ¢, Og if there are no edge labels

Formal semantics

S,seP
S,sEpAY
S,sEpVvy
S,sE -9
S,sE (a)e
S,sE [a]e

seP

S,sEpand G,sFy
S,sEporS,sEvy

S,sH ¢

thereis s > t such that S, ¢ = ¢
forall s > t, we have G, t F ¢

Examples

PAOQ “The state is in P and there exists a transition to Q.

[a]L “The state has no outgoing a-transition.

Interpretations

» Temporal Logic talks about time:
» states: points in time (discrete/continuous)
» O¢ ‘sometime in the future ¢ holds’
» O¢ ‘always in the future ¢ holds’
» Epistemic Logic talks about knowledge:
» states: possible worlds
» &¢ ‘@ might be true’
» O¢ ‘g is certainly true’

Examples: Temporal Logic

system & = (S, <, P)

» “Pnever holds”

Examples: Temporal Logic

system & = (S, <, P)

» “P never holds”
» “After every P there is some Q7

Examples: Temporal Logic

system & = (S, <, P)
» “P never holds”
-OP
» “After every P there is some Q7
O(P —~ ©Q)
» “Once P holds, it holds forever”

Examples: Temporal Logic

system & = (S, <, P)
» “P never holds”
» “After every P there is some Q7
o(P - ©Q)
» “Once P holds, it holds forever”
o(P - oP)

» “There are infinitely many P

Examples: Temporal Logic

system & = (S, <, P)
» “P never holds”
» “After every P there is some Q7
o(P - ©Q)
» “Once P holds, it holds forever”
o(P - oP)

» “There are infinitely many P
ooP

Translation to first-order logic

Proposition

For every formula ¢ of propositional modal logic, there exists a
formula ¢ (x) of first-order logic such that

S,skg iff SE@(s).

Proof

Translation to first-order logic

Proposition

For every formula ¢ of propositional modal logic, there exists a
formula ¢ (x) of first-order logic such that

S,skg iff SE@(s).

Proof
P* = P(x)
(pAy)" = 9" (x) Ay~ (x)
(pvy)" = ¢"(x) vy (x)
(~)" = —¢p"(x)
({a)g)" = Fy[Ea(x,y) A @™ (¥)]

([ale)" = Vy[Ea(xy) = 9" ()]

Bisimulation

G and T transition systems
Z ¢ S x T is a bisimulation if, for all (s, t) € Z,
(local) seP < teP
(forth) for everys —% ', exists t > t' with (s',t') € Z,

(back) for everyt —“ ¢/, exists s > s’ with (s',¢') € Z.

S, sand T, t are bisimilar if there is a bisimulation Z with (s, t) € Z.

S.Z of
a a
S/.Z ,,,,,,,,,,, x t,

Unravelling

Lemma

S and U (S) are bisimilar.

Bisimulation invariance
Theorem
Two finite transition systems & and T are bisimilar if, and only if,

Gk < TEg, for every modal formula ¢ .

Definition

A formula ¢(x) is bisimulation invariant if

S,s~%,t implies Gk ¢(s) = TE ¢(1).

Theorem

A first-order formula ¢ is equivalent to a modal formula if, and only
if, it is bisimulation invariant.

First-Order Modal Logic

Syntax
first-order logic with modal operators (a)¢ and [a]¢

First-Order Modal Logic

Syntax
first-order logic with modal operators (a)¢ and [a]¢

Models
transistion systems where each state s is labelled with a >-structure 2
such that

s—>%t implies A;C A,

First-Order Modal Logic

Syntax
first-order logic with modal operators (a)¢ and [a]¢

Models
transistion systems where each state s is labelled with a >-structure 2
such that

s—>%t implies A;C A,
Examples

» OVxe(x) - Vx O @(x) is valid.
» VxO¢(x) > OVxe(x) is not valid.

Tableaux

Tableau Proofs

Statements
SEQ SE@ s>t

s, t state labels, ¢ a modal formula

Rules
SEQ

7N\

SEWVe sk 9,

SHEUm st=9n

Tableaux

Construction

A tableau for a formula ¢ is constructed as follows:

>

>

>

start with s, ¥ @

choose a branch of the tree

choose a statement s = /s # y on the branch
choose a rule with head s = y/s # v

add it at the bottom of the branch

repeat until every branch contains both statements s = y and
s # y for some formula y

Tableaux

Construction

A tableau for a formula ¢ is constructed as follows:

>

>

>

start with s, ¥ @

choose a branch of the tree

choose a statement s = /s # y on the branch
choose a rule with head s = y/s # v

add it at the bottom of the branch

repeat until every branch contains both statements s = y and
s # y for some formula y

Tableaux with premises I

>

choose a branch, a state s on the branch, a premise v € I', and add
s = ¥ to the branch

Rules

SE @ S @
| |
SFE @ SEQ
SEQAY SEQAY SEQVY SEQVY

| ///\\\ ///\\\

SE@ SEQ SEY SEQ SEVY SFEQ

SEY SEY
SEQ >y SHEQ->Y SEQeoy SHEQ oY
SEQ SEY SEQ sSEQ SEQ SE@ SE @

SHEY SEVY SEY SEY SEVY

Rules

sk (a)g sk (a)g sk [ale s [ale
s—lﬂt t’hlé<p t’ilz(p s—>|“t
t|:|<p tl?l-q)
skEVxe SEVxe sk dxe s dxe

sEgp(x—t] sH@[xpc] sE@[xpc] sEe[x—t]

t anew state, ¢’ every state with entry s —* ¢’ on the branch,
c a new constant symbol, t an arbitrary term

Example ¢ £ O¢

Example = 0(¢ - v) — (0p — Oy)

sED(e > y) > (Op - Oy)

sEO(p —>y)

s e — Oy

seUe

s Oy

Example £ OVxp - VxO ¢

s#EOVxe — Ve

sEOVxe

sk VxOg

si# Oep[x — c]

s>t

t# glx]

tEVxe

tE @[x]

Soundness and Completeness

Consequence

v is a consequence of I if, and only if, for all transition systems G,
S,sk¢, forallseSandgel,
implies that

S,sey, forallseS.

Soundness and Completeness

Consequence

v is a consequence of I if, and only if, for all transition systems G,
S,sk¢, forallseSandgel,
implies that

S,sey, forallseS.

Theorem

A modal formula ¢ is a consequence of I' if, and only if, there exists a
tableau T for ¢ with premises I" where every branch is contradictory.

Temporal Logics

Linear Temporal Logic (LTL)

Speaks about paths. P—e—e—PQ—Q—0—> -

Syntax
» atomic predicates P, Q, . ..
» boolean operations A, Vv, -
» next X¢
» until pUy
» finally Fg := TU¢
» generally Gy := -F-¢

Examples
FP a state in P is reachable
GFP we can reach infinitely many states in P

(=P)U(P A Q) the first reachable state in P is also in Q

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:
» L can be defined in LTL.
» L can be defined in first-order logic.

» L can be defined by a star-free regular expression.

Computation Tree Logic (CTL and CTL*)

Applies LTL-formulae to the branches of a tree.

Syntax (of CTL*)

» state formulae ¢:
9=Plonglovel-¢|Ay|Ey

» path formulae y:
vi=elyay|yvy|-y|Xy|yUy|Fy| Gy

Examples
EFP a state in P is reachable
AFP every branch contains a state in P
EGFP there is a branch with infinitely many P
EGEFP there is a branch such that we can reach P from every

of its states

The modal y-calculus (L)

Adds recursion to modal logic.

Syntax

p:=Plorp|ove|-p|{a)e]|[ale|uX.o(X)|vX.0(X)

Examples

pX(Pv &X) o astate in P is reachable
vX(PAOX) there is a branch with all states in P

The modal y-calculus (L)

Theorem

A regular tree language can be defined in the modal y-calculus if, and
only if, it is bisimulation invariant.

Theorem
Satisfiability of y-calculus formulae is decidable.

(The algorithm uses tree automata and parity games.)

Description Logics

Description Logic

General Idea

Extend Modal Logic with operations that are not
bisimulation-invariant.

Applications

Knowledge representation, deductive databases, system modelling,
semantic web

Ingredients
» individuals: elements (Anna, John, Paul, Marry,...)
» concepts: unary predicates (person, male, female,...)
» roles: binary relations (has_child, is_married_to,...)
» TBox: terminology definitions

» ABox: assertions about the world

Example
TBox

man := person A male
woman := person A female
father := man A Jhas_child.person

mother := woman A Jhas_child.person

ABox

man(John)
man(Paul)
woman(Anna)

woman (Marry)
has_child(Anna, Paul)

is_married_to(Anna, John)

Syntax

Concepts
¢:=P|T[L|-¢|prg|eVe|VRp[IRp|(>nR) |(<nR)
Terminology axioms
PEY =y
TBox Axioms of the form P = ¢.
Assertions
¢(a) R(ab)

Extensions
» operations on roles: RN'S, RUS, Ro S, =R, R", R*, R~

» extended number restrictions: (>1nR)¢, (<nR)¢

Algorithmic Problems

» Satisfiability: Is ¢ satisfiable?

» Subsumption: ¢ E y?

» Equivalence: ¢ = y?

» Disjointness: ¢ A ¥ unsatisfiable?

All problems can be solved with standard methods like tableaux or
tree automata.

Semantic Web: OWL (functional syntax)

Ontology(

Class(pp:man complete

intersectionOf (pp:person pp:male))
Class(pp:woman complete

intersectionOf (pp:person pp:female))
Class(pp:father complete

intersectionOf (pp:man

restriction(pp:has_child pp:person)))
Class(pp:mother complete
intersectionOf (pp:woman
restriction(pp:has_child pp:person)))

Individual(pp:John type(pp:man))

Individual(pp:Paul type(pp:man))

Individual (pp:Anna type (pp:woman)
value(pp:has_child pp:Paul)
value(pp:is_married_to pp:John))

Individual (pp:Marry type (pp:woman))

