
Exercise 1 Suppose we are given a predicate flight(From,To,Time, Price) containing information

about direct flights including the starting airport, the destination, the flight time, and the price of a

ticket. Write a Prolog program computing a predicate travel(From,To, Stops,Time, Price) indicating

all possibilities to travel from one city to another using one or several flights.

Exercise 2 Write aProlog predicatefib(N , X) computing theFibonacci sequence. Evaluatefib(, X)
and fib(N , ).

Exercise 3 Write Prolog definitions of the following predicates.

length(List, N) N is the length of List .

reverse(X ,Y) Y is the reverse of the list X .

append(X ,Y , Z) Z is the concatenation of the lists X and Y .

map(X ,Y) maps a list X = [X , . . . , Xn] to Y = [f (X), . . . , f (Xn)] .

fold le>(X ,Y , Z) maps Y = [Y, . . . ,Yn] to Z = f (Ȃ f (f (X ,Y),Y)Ȃ,Yn) .

fold right(X ,Y , Z) maps Y = [Y, . . . ,Yn] to Z = f (Y, f (Y, . . . , f (Yn, X) . . .))) .

Exercise 4 Write a naive sort function

naive_sort(X,Y) :- permute(X,Y), sorted(Y).

by implementing the relations

sorted(X) checks that the list X is sorted.

insert(X ,Y , Z) if the list Z is obtained from Y by inserting X at an arbitrary position.

permute(X ,Y) if the list Y is a permutation of X .

Implement merge sort using a relation

merge(X ,Y , Z) merges two sorted lists X and Y into Z .

Exercise 5 We consider directed graphs of the form V܂ , E܂. Express the following relation in re-

lational algebra.

(a) x and y are not connected by an edge.

(b) te edge x܂ , y܂ is part of a triangle.

(c) x has at least two neighbours.

(d) Every neighbour of x is also a neighbour of y.



Exercise 6 Evaluate the following Datalog program on the tree V܂ , E , P܂ to the right.

U ← S(x , y) ∧W(x) ∧W(y)

W(x) ← P(x)

W(x) ← E(x , y) ∧W(y)

S(x , y) ← E(z, x) ∧ E(z, y) ∧ x ≠ y

R(x , y) ← P(x) ∧ x = y

R(x , y) ← E(x , z) ∧ R(z, y)

R(x , y) ← R(x , z) ∧ E(z, y)



 

  

 

P

P

P



