Exercise 1 Prove that the following formulae are valid using Natural Deduction.

(a)
$$\varphi \wedge \psi \rightarrow \psi \wedge \varphi$$

(b)
$$\psi \rightarrow ((\varphi \land \psi) \lor \psi)$$

(c)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$

(d)
$$\varphi \rightarrow \neg \neg \varphi$$

(e)
$$((\varphi \land \psi) \lor \psi) \rightarrow \psi$$

(f)
$$\neg \neg \varphi \rightarrow \varphi$$

(g)
$$\varphi \vee \neg \varphi$$

(h)
$$\neg(\neg\varphi \land \neg\psi) \rightarrow (\varphi \lor \psi)$$
 (This one is tricky.)

(i)
$$\varphi \to \exists x \varphi$$

(j)
$$\forall x \varphi \rightarrow \varphi$$

(k)
$$\forall x R(x, x) \rightarrow \forall x \exists y R(f(x), y)$$

(l)
$$\exists x (\varphi \lor \psi) \to (\exists x \varphi \lor \exists x \psi)$$

(m)
$$(\exists x \varphi \lor \exists x \psi) \to \exists x (\varphi \lor \psi)$$

(n)
$$\forall x \varphi \land \forall x \psi \rightarrow \forall x (\varphi \land \psi)$$

(o)
$$\forall x (\varphi \land \psi) \rightarrow \forall x \varphi \land \forall x \psi$$

(p)
$$\forall x \forall y [\varphi(x) \leftrightarrow \varphi(y)] \land \exists x \varphi(x) \rightarrow \forall x \varphi(x)$$

Exercise 2 Prove that the formulae from Exercise 1 are valid using tableau proofs.

Exercise 3 Find all consistent sets for the following sets of rules.

(a)
$$\frac{\alpha : \beta}{\delta} = \frac{\alpha : \gamma}{\delta}$$

(b)
$$\frac{\alpha : \beta \gamma}{\beta}$$

(c)
$$\frac{\alpha}{\alpha} \frac{\alpha \beta}{\gamma} \frac{\alpha : \gamma}{\beta}$$

Exercise 4 For each subset $\Phi \subseteq \mathcal{P}(\{\alpha, \beta\})$, try to find a set of rules R such that Φ is the set of all consistent sets for R.

1

Exercise 5 Derive the following additional rules from the basic ones of the Natural Deduction calculus.

$$\frac{\Gamma \vdash \neg \neg \varphi}{\Gamma \vdash \varphi} \qquad \frac{\Gamma \vdash \varphi}{\Gamma, \Delta \vdash \varphi} \qquad \frac{\Gamma, \neg \varphi \vdash \neg \psi}{\Gamma \vdash \psi \to \varphi} \qquad \frac{\Gamma, \neg \varphi \vdash \psi}{\Gamma \vdash \varphi \lor \psi}$$

Exercise 6 Find a rule for proofs by induction.

$$\frac{\dots}{\forall x \varphi(x)}$$
 where $\varphi(x)$ is a formula talking about natural numbers.