Exercise 1 Prove that the following formulae are valid using Natural Deduction.
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Exercise 2 Prove that the formulae from Exercise 1 are valid using tableau proofs.

Exercise 3 Find all consistent sets for the following sets of rules.
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Exercise 4 For each subset @ € R({a, }), try to find a set of rules R such that @ is the set of all
consistent sets for R.



Exercise 5 Derive the following additional rules from the basic ones of the Natural Deduction
calculus.
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Exercise 6 Find a rule for proofs by induction.
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where ¢(x) is a formula talking about natural numbers.



