IA168 — Problem set 2

Throughout this problem set, "game" means "two-player strategic-form game with mixed strategies".

Problem 1 [7 points]

Consider a game where each player has exactly five pure strategies, called A_i, B_i, C_i, D_i, E_i for $i \in \{1, 2\}$. The utility functions are defined by the following table:

	A_2	B_2	C_2	D_2	E_2
$\overline{A_1}$	(-4,4)	(-3,2)	(2, 2)	(4,1)	(-2, -1)
B_1	(0, 6)	(-3, 3)	(2, 3)	(7, 3)	(-3, 3)
C_1	(-6,0)	(3, 6)	(4, 1)	(1, 2)	(-6,0)
D_1	(-2, -1)	(-2,7)	(2, 2)	(5, 3)	(-5, 3)
E_1	(-6, 3)	(-6, 3)	(1, 3)	(3, 2)	(3, 6)

- (a) Find a Nash equilibrium $\sigma^* = (\sigma_1^*, \sigma_2^*)$ such that $|\operatorname{supp}(\sigma_1^*)| + |\operatorname{supp}(\sigma_2^*)|$ is maximal.
- (b) Prove that σ^* is a Nash equilibrium.
- (c) Prove the maximality of $|\operatorname{supp}(\sigma_1^*)| + |\operatorname{supp}(\sigma_2^*)|$.

Problem 2 [5 points]

Give an example of a game where

- (a) there is no weakly dominating pure strategy, but there exists a weakly dominating mixed strategy;
- (b) there is no weakly dominating pure strategy, but there exists a very weakly dominating mixed strategy;
- (c) there is no strictly dominated pure strategy, but there exists a strictly dominated mixed strategy;
- (d) there is no very weakly dominated pure strategy, but there exists a strictly dominated mixed strategy or prove that no such game exists.

Problem 3 [8 points]

Prove that for every $k \in M$ there is a game with exactly k Nash equilibria, where

- (a) $M = \{2^n 1 \mid n \in \mathbb{N}\};$
- (b) $M = \mathbb{N}$.