IA168 — Problem set 2 Throughout this problem set, "game" means "two-player strategic-form game with mixed strategies". ## Problem 1 [7 points] Consider a game where each player has exactly five pure strategies, called A_i, B_i, C_i, D_i, E_i for $i \in \{1, 2\}$. The utility functions are defined by the following table: | | A_2 | B_2 | C_2 | D_2 | E_2 | |------------------|----------|---------|--------|--------|----------| | $\overline{A_1}$ | (-4,4) | (-3,2) | (2, 2) | (4,1) | (-2, -1) | | B_1 | (0, 6) | (-3, 3) | (2, 3) | (7, 3) | (-3, 3) | | C_1 | (-6,0) | (3, 6) | (4, 1) | (1, 2) | (-6,0) | | D_1 | (-2, -1) | (-2,7) | (2, 2) | (5, 3) | (-5, 3) | | E_1 | (-6, 3) | (-6, 3) | (1, 3) | (3, 2) | (3, 6) | - (a) Find a Nash equilibrium $\sigma^* = (\sigma_1^*, \sigma_2^*)$ such that $|\operatorname{supp}(\sigma_1^*)| + |\operatorname{supp}(\sigma_2^*)|$ is maximal. - (b) Prove that σ^* is a Nash equilibrium. - (c) Prove the maximality of $|\operatorname{supp}(\sigma_1^*)| + |\operatorname{supp}(\sigma_2^*)|$. ## Problem 2 [5 points] Give an example of a game where - (a) there is no weakly dominating pure strategy, but there exists a weakly dominating mixed strategy; - (b) there is no weakly dominating pure strategy, but there exists a very weakly dominating mixed strategy; - (c) there is no strictly dominated pure strategy, but there exists a strictly dominated mixed strategy; - (d) there is no very weakly dominated pure strategy, but there exists a strictly dominated mixed strategy or prove that no such game exists. ## Problem 3 [8 points] Prove that for every $k \in M$ there is a game with exactly k Nash equilibria, where - (a) $M = \{2^n 1 \mid n \in \mathbb{N}\};$ - (b) $M = \mathbb{N}$.