IA168 — Problem set 3

Problem 1 [8 points]

Find a perfect-information extensive-form game with pure strategies only where all of the following conditions are satisfied:

- there is a strategy profile whose outcome is for both players better than that of any Nash equilibrium;
- there is a Nash equilibrium whose outcome is for both players better than that of any subgame-perfect equilibrium;
- there are exactly **two** subgame-perfect equilibria s, s', and the outcome of s is for both players better than that of s'.

Problem 2 [8 points]

For a strategy profile s of an imperfect-information extensive-form game G with pure strategies only, consider the following property (*):

> For every information set I, there exists a node $h \in I$ such that s^h is a Nash equilibrium in G^h .

Prove or disprove the following two propositions: In every imperfect-information game where no path leads twice through the same information set, it holds that:

a) every subgame-perfect equilibrium satisfies (*);

b) every strategy profile which satisfies (*) is a subgame-perfect equilibrium.

Problem 3 [4 points]

Consider this strategic-form game G:

	A_2	B_2	C_2
A_1	(x,x)	(0, 0)	(10y, 0)
B_1	(0, 0)	(3x, 3x)	(0,0)
C_1	(0, 10y)	(0, 0)	(y,y)

Consider game G_{t-rep} . Find the necessary and sufficient condition for x, y, t so that there is an SPE τ such that $u_1(\tau) > 3xt$. Shortly explain why your answer is correct.