Numerical methods – lecture 2

Jiří Zelinka

Autumn 2017

Jiří Zelinka Numerical methods – lecture 2

<ロ> (四) (四) (三) (三) (三)

Solving nonlinear equations

Equation

$$f(x)=0,$$

 $x \in I = [a, b]$, f is continuous real function $\hat{x} \in I$ - solution, root of f.

Iterative process: We create sequence $(x_k)_{k=0}^{\infty}$, $x_k \to \hat{x}$. $(x_k)_{k=0}^{\infty}$ – iterative sequence.

Bisection method

$$f(a) \cdot f(b) \leq 0, \ a_0 = a, \ b_0 = b, \ \text{let} \ x_0 = (a_0 + b_0)/2.$$

If $f(a_0) \cdot f(x_0) \leq 0$ we choose
 $a_1 = a_0, \ b_1 = x_0, \ \text{else}$
 $a_1 = x_0, \ b_1 = b_0,$
 $\hat{x} \in [a_1, b_1].$

Generally: we have a_k , b_k , $f(a_k) \cdot f(b_k) \le 0$, $\hat{x} \in [a_k, b_k]$, let $x_k = (a_k + b_k)/2$. If $f(a_k) \cdot f(x_k) \le 0$ we choose $a_{k+1} = a_k$, $b_{k+1} = x_k$, else $a_{k+1} = x_k$, $b_{k+1} = b_k$, so $\hat{x} \in [a_{k+1}, b_{k+1}]$.

Estimate of the absolute error in *k*-th step:

$$|x_k - \hat{x}| \le \frac{b-a}{2^{k+1}}$$

3

伺下 イヨト イヨト

Fixed point iteration

Equation

$$x = g(x)$$

- g continuous on I = [a, b]
- Solution \hat{x} is called the **fixed point** of the function g

Iteration process

- Let us choose $x_0 \in I$ and $x_1 = g(x_0)$.
- Generally $x_{k+1} = g(x_k)$.
- Function g is called **iteration function**.

< □ > < @ > < 注 > < 注 > ... 注

Geometric meaning

5/11

Graphical representation of the iteration process:

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Э

< ∃→

The convergence is faster if the derivative of g in the intersection is close to 0:

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

문 🛌 문

The existence and uniqueness of the fixed point Theorem: If for the function g continuous on I = [a, b] the following condition holds

$$\forall x \in I : g(x) \in I,$$

then there exists at least one fixed point $\hat{x} \in I$ of the function g. Moreover, if there exits constant L < 1 that for all $x \in I$

$$\forall x \in I : |g'(x)| \leq L,$$

then there exit one fixed point \hat{x} and for any $x_0 \in I$ the iteration process given by formula

$$x_{k+1} = g(x_k)$$

converges to this fixed point.

Estimation of the error

$$|x_k - \xi| \le \frac{L^k}{1 - L} |x_0 - x_1|$$

Example

$$x^3 + 4x^2 - 10 = 0$$

Classification of the fixed points

The fixed point \hat{x} of the function g is called

- attractive if |g'(x)| < 1, then the iterative process converges on some neighborhood of x̂.
- repelling if $|g'(\hat{x})| > 1$, then the iterative process doesn't converge.

(本部) (本語) (本語) (語)

Jiří Zelinka Numerical methods – lecture 2

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

Creating of the iteration function

$$f(x) = 0 \qquad \rightarrow x = g(x)$$
 $g(x) = x - rac{f(x)}{K}$ $g(x) = x - rac{f(x)}{h(x)}$

Generally:

・ロン ・回と ・ヨン・

æ