Numerical methods – lecture 3

Jiří Zelinka

Autumn 2017

Jiří Zelinka Numerical methods – lecture 3

<ロ> (四) (四) (三) (三) (三)

Repetition

Equation

$$f(x) = 0 \qquad \longmapsto \qquad x = g(x)$$

Fixed point method:

Iteration process:

$$x_{k+1} = g(x_k)$$

Geometric meaning

The fixed point \hat{x} is the intersection of the function g and line

The existence and uniqueness of the fixed point Theorem: If for the function g continuous on I = [a, b] the following condition holds

$$\forall x \in I : g(x) \in I,$$

then there exists at least one fixed point $\hat{x} \in I$ of the function g. Moreover, if there exits constant L < 1 that for all $x \in I$

$$\forall x \in I : |g'(x)| \leq L,$$

then there exit one fixed point \hat{x} and for any $x_0 \in I$ the iteration process given by formula

$$x_{k+1} = g(x_k)$$

converges to this fixed point.

Function g is called **contraction**.

The error of the iteration:

$$|x_k - \xi| \le \frac{L^k}{1 - L} |x_0 - x_1|$$

Classification of the fixed points

The fixed point \hat{x} of the function g is called

- attractive if |g'(x)| < 1, then the iterative process converges on some neighborhood of x̂.
- repelling if |g'(x)| > 1, then the iterative process doesn't converge.

Creating of the iteration function

$$g(x) = x - \frac{f(x)}{K}$$

$$g(x) = x - \frac{f(x)}{h(x)}$$

Jiří Zelinka

Numerical methods – lecture

Newton(-Raphson) method

Let us return to the equation

$$f(x)=0.$$

 x_0 – initial iteration, x_1 – intersection of the tangent to f in x_0 the axis x.

 x_{k+1} – intersection of the tangent to f in x_k the axis $x \rightarrow$ tangent method

3.0

Theorem 1

Newtom methods converges to the root \hat{x} if the function f has continuous derivative in some neighborhood of \hat{x} , $f'(\hat{x}) \neq 0$ and the initial iteration x_0 is close enogh to \hat{x} .

Theorem 2

If f has continuous the second derivative in some neighborhood of \hat{x} and $f'(\hat{x}) \neq 0$ then $g'(\hat{x}) = 0$ for the iteration function of Newton method.

・ロン ・回 と ・ ヨ と ・ ヨ と

Example 1:

Computation of \sqrt{a}

$$f(x) = x^2 - a, f'(x) = 2x.$$

$$x_{k+1} = x_k - \frac{x_k^2 - a}{2x_k} = \frac{x_k^2 + a}{2x_k}$$

Example :

Computation of $\frac{1}{a}$ without division: $f(x) = \frac{1}{x} - a$

$$x_{k+1} = x_k (2 - a x_k)$$

< □ > < @ > < 注 > < 注 > ... 注

Theorem 3

- Let f has continuous the second derivative in [a, b], $f(a) \cdot f(b) \leq 0$.
- Q Let ∀x ∈ [a, b] : f'(x) ≠ 0 and f" doesn't change its sign in [a, b]

Let's choose $x_0 \in \{a, b\}$ such that $f(x_0) \cdot f'' \ge 0$. Then the sequence generated by Newton method converges monotonously to \hat{x} .

(ロ) (同) (E) (E) (E)

Fourier conditions for convex function

Fourier conditions for concave function

Jiří Zelinka Numerical methods – lecture 3

- < ≣ →

æ

Methods derived from Newton method

Secant methods

Jiří Zelinka

False position methods (regula falsi)

Similar to secant method with sign control: f(a)f(b) < 0, $f \in C[a, b]$, $x_0 = a$, $x_1 = b$, $f(x_0)f(x_1) < 0$

$$x_{k+1} = x_k - \frac{x_k - x_s}{f(x_k) - f(x_s)} f(x_k), \qquad k = 0, 1, \dots,$$

wher s is the largest index for which $f(x_k)f(x_s) < 0$.

Remark: If f is convex or concave in [a, b] then s = 0 or s = 1 for all iterations.

(日) (同) (E) (E) (E)

Regula falsi for convex function

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

Let
$$p \ge 1$$
, $x_k \to \hat{x}$, $e_k = x_k - \hat{x}$. If

$$\lim_{k\to\infty}\frac{|e_k|}{|e_{k+1}|^p}=C<\infty$$

then *p* is called the **order (rate)** of the convergence of the sequence $(x_k)_{k=0}^{\infty}$.

If the sequence $(x_k)_{k=0}^{\infty}$ is generated by the numerical methods, then p is the **order (rate) of the method**.

Theorem

Let the derivatives of the iteration function g be continuouns to order $q \ge p$. Then the order of the convergence of the sequence $(x_k)_{k=0}^{\infty}$ generated by the iteration process $x_{k+1} = g(x_k)$ is equal to p iff $g(\hat{x}) = \hat{x}, g'(\hat{x}) = 0, g''(\hat{x}) = 0, \dots, g^{(p-1)}(\hat{x}) = 0,$ $g^{(p)}(\hat{x}) \ne 0,$

Orders of methods:

Fixed point1Newton2Secant $\frac{1+\sqrt{5}}{2} \doteq 1.618$ Regula falsi1

(日) (同) (E) (E) (E)