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Preface

I have been using R since the summer of 2000 and have been trying to teach it to others for almost as long.
When I was learning R (on my own) I got very frustrated with most of the existing R documentation. In
particular, a lot of the documentation was written as a companion manuscript to an introductory statistics
course. These and others covered the ‘fundamentals of R’ in a chapter or two and then spent the rest of their
time demonstrating how to perform various statistical analyses using R. I felt they introduced you to some
of the fundamentals, but very few discussed them extensively. I have also found over the years that, even as
a full-time Biostatistician, 99% of my time is spent dealing with these fundamentals, not statistical analyses.
Therefore, the purpose of this document and its companion is to introduce you to the fundamentals and
functionality of the R programming language. The only statistics that will be covered is how to generate
descriptive statistics and some statistics related graphics.

This document and its companion are by no means an ‘original’ piece of work. I have merely assembled
much of the existing documentation into my own set of documents. However, I have tried to present the
topics in a slightly different order than what is usually done. Specifically, the first document (‘An Overview’)
covers some of the fundamentals, but then gets you right into the functionality – we read in a data set, make
modifications to it, summarize it with descriptive statistics, and generate various graphical depictions of it.
The goal is that you will be very comfortable interacting with R by the end of the first document. The second
document (‘The Nuts & Bolts’) returns to the fundamentals, covering various topics in more depth. The
second document also includes a catalog of various R functions and an R graphics reference. Throughout
both documents, I have also tried to include as much of my practical experience with R that I could.

I hope you find my group of documents helpful and hope they allow you to start using R confidently. YOu
can find this document, it’s companion and other supporting files at http://biostat.mc.vanderbilt.edu/
TheresaScott under Current Teaching Material. Feel free to contact me at theresa.scott@vanderbilt.edu
with any questions and/or comments. I also welcome any suggestions and (constructive) criticism.

Lastly, the following is a crude list of the references I have used to compile this document and its companion:

� Contributed documents, manuals, frequently asked questions, and newsletters available via the Other,
Manuals, FAQs, and Newsletter links under the Documentation header at the R website.

� Several books including1

– ‘An Introduction to R’ by WN Venables, et al.

– ‘Introductory Statistics with R’ by Peter Dalgaard.

– ‘R Graphics’ by Paul Murrell.

– ‘Using R for Introductory Statistics’ by John Verzani.

– ‘Statistics: An Introduction Using R by Michael J Crawley.

– ‘A Handbook of Statistical Analyses using R’ by Brian Everitt and Torsten Hothorn.

– ‘An R and S-Plus Companion to Applied Regression’ by John Fox.

– ‘Data Analysis and Graphics Using R’ by John Maindonald and John Braun.

1Note, a comprehensive list is available via the Books link under the same Documentation header at the R website.
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Chapter 1

Some Language Essentials

Learning objective
To understand how to use R interactively and the language essentials of assignment, functions, and data
structures.

The goal of this document is to briefly introduce you to the very powerful facilities that the R programming
language provides. We cannot do this, however, without briefly covering some of the essentials of the R
language.

R is a free interactive programming language and environment, created as an integrated suite of software
facilities for data manipulation, simulation, calculation, and graphical display. Even though R is mainly used
as a statistical analysis package, R is in no way limited to just statistics. As a side, R is an independent,
open-source implementation of the S language. The commercial product S-PLUS is also based on S, and R
and S-PLUS are essentially identical.

The benefits of using R include:

� Its availability as free software – ‘free’ in terms of price, and (more importantly) in terms of freedom
to run, copy, distribute, study, change, and improve the software.

� Its ability to run on Windows, MacOS, and Linux and UNIX platforms.

� The ability to completely reproduce your analysis and results, if properly documented, since the lan-
guage is code driven. This is not always true with menu driven analysis packages; they are often much
harder to document.

� Its extendability – hundreds of libraries of functions to use, as well as the ability to write your own
functions.

� Its flexibility – unlike some classical software programs (e.g., SAS and SPSS), which display all the
results of an analysis, R allows you to assign any results to a (symbolic) variable, so that an analysis
can be done with minimal or no output, and the parts of the results of interest can be extracted and
used in subsequent analyses.

� Its excellent graphing capabilities, including the ease with which well-designed publication-quality plots
can be produced.

For this course, you should have already installed R onto your laptop/computer – these notes were compiled
using R version 2.8.1 (2008-12-22). In general, both the complete instructions and the necessary accompa-
nying files needed to install R are distributed by the Comprehensive R Archive Network (CRAN) on their
website http://www.cran.r-project.org. See any of the following Documentation for detailed instruc-
tions: the ‘R Installation and Administration’ document under the Manuals link; the FAQ link (both general
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CHAPTER 1. SOME LANGUAGE ESSENTIALS

and Windows and Mac specific); and/or the ‘Installing R under Windows’ article in the June 2001 edition
(Vol. 1/2; pages 11-14) Newsletter. NOTE: You will also need to have administrative rights to your lap-
top/computer in order to successfully install a package, which we will cover via a practice exercise.

Before going further, it is helpful to interact with R on the simplest level – that is, using it as a calculator.
The following session is intended to introduce you to some of the features of the R environment by using them.

STARTING R: When using the Windows or Mac versions of R, launch R by double-clicking the R icon
on the desktop, or by finding the R program under the start menu. This will start R in a new console
window with a command line subwindow. On the other hand, when using the Linux/Unix version of R,
launch R by typing ‘R’ at the shell command prompt (i.e., ‘$ R’ if we assume that the shell prompt is ‘$’)
of a terminal window. This will cause R to start up as an interactive program in the current terminal window.

→ Practice Exercise: Go ahead and start R using one of the mentioned methods that is appropriate for your
type of laptop/computer.

ENTERING EXPRESSIONS: There are several ways to interact with R, but the simplest way is to
type expressions at the cursor following the command line prompt, which is denoted by the greater than
symbol, >. To evaluate the expression, we simply press the ENTER key. The simplest expressions to enter
at the command line are arithmetic expressions involving numbers and algebraic operators. R includes the
usual arithmetic operators: + (addition), - (subtraction), * (multiplication), / (division), and ^ (exponen-
tiation). Note, unlike most arithmetic operators, the exponentiation operator, ^, works from the right to
the left – 2^2^3 = 28 not 43. The set of arithmetic operators also includes %% (modulo) and %/% (integer
division). In addition, (1) instead of using a newline, (short) expressions can be separated by a semi-colon
(;); and (2) parentheses can be used to group expressions, altering the order in which expression are evaluated.

→ Practice Exercise: Type any of the following arithmetic expression at the command line and press ENTER
or try any of your own.

> 2 * 10

[1] 20

> 10 + 13 - 21

[1] 2

> 2^3

[1] 8

> 1 - 2 * 3

[1] -5

> (1 - 2) * 3

[1] -3

As we see, the output of each evaluated expression is printed (and lost). In addition, the printed output
may appear odd. The [1] in front of the output is part of R’s way of printing intrinsic data structures to
the screen. More specifically, when printed output consists of many values spread over several lines, each
line begins with the index (number) of the first element of the line. You also probably noticed the additional
spaces around some of the arithmetic operators. Although spaces are not required to separate elements of
an arithmetic expression (i.e., are ignored), judicious use of spaces can help to clarify the meaning of the
expression.
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CHAPTER 1. SOME LANGUAGE ESSENTIALS

EXPRESSION EVALUATION: R evaluates expressions using a type of question-and-answer model.
Specifically, when you type an expression at the command line prompt and press ENTER, the command
is first transformed by R into an internal representation. If the expression is syntactically complete, the
transformed expression is then executed and R returns (prints) the result value of the expression to the
screen. Once executed, R then asks for more input by printing the command line prompt and cursor. In
future sections, we will see that not all expressions return (print) a result value.

INCOMPLETE EXPRESSIONS: If an expression is not syntactically complete when ENTER is pressed,
R will print the continuation prompt, +, at the beginning of the second and subsequent lines and continue
to read input until the expression is syntactically complete.

→ Practice Exercise: To demonstrate how R reacts to incomplete expressions, type in the mathematical
expression 2 + 3 + 5 - 2 at the command line by hitting the ENTER key after each arithmetic operator:

> 2 +
+ 3 +
+ 5 -
+ 2
[1] 8

The other main reasons why an expression may be incomplete are because of unmatched parentheses and/or
quotation marks. In the Windows/Mac versions of R, use the Esc key to cancel an incomplete expression,
which will print a new command line prompt and cursor. In the Unix/Linux version of R, use Ctrl-C.

RECALL/CORRECTION OF PREVIOUS EXPRESSIONS: Using the command line in R can in-
volve a fair amount of typing. However, there are ways to reduce the amount of necessary typing. Specifically,
the R console keeps a history of the expressions entered, which is known as the command history. Individu-
ally, the expressions can be accessed using the up- and down-arrow keys. Repeatedly pushing the up-arrow
will scroll backwards through the command history. With the up- and down-arrow keys we can access the
desired previous expression and then edit it as desired using keys like the left- and right-arrow keys, the
Home and End keys (or Ctrl-a and Ctrl-e, respectively), and the Backspace and Delete keys. Another useful
keyboard shortcut to use in conjunction with the Home key/Ctrl-a is Ctrl-k, which ‘kills’ (deletes) the current
line (if the cursor is at the beginning of the line).

→ Practice Exercise: Using the up-arrow key, recall one of your previous arithmetic expressions, and use
the left- and right-arrow keys, the Home and End keys, and the Backspace and Delete keys to modify and
re-evaluate the expression.

QUITTING R: Lastly, to quit R, type q() at the command line prompt – you must include the paren-
theses (‘()’). You will then be asked Save workspace image?. Answer “No” by clicking the No button or
typing n. Don’t worry if this doesn’t make a lot of sense right now; we’ll be discuss it more in the ‘Object
Management’ section of the second document. NOTE: When we type q() and hit ENTER, we are actually
executing the quit function. We will be discussing functions in more detail soon.

THE GRAMMAR OF EXPRESSIONS: Up to this point, all of the expressions we have entered at the
command line have been simple mathematical expressions involving only numbers and arithmetic operators.
Also, up to this point, the result of each evaluated expression has been printed and then discarded. Obvi-
ously, we need to be able to use R as more than just a calculator. Specifically, we need to be able to (among
other things): (1) retain the results of specific evaluated expressions; (2) use data that consists of more
than one number; and (3) possess the tools to carry out a variety of desired tasks. The solution to these de-
sires will involve evaluating expressions that include (1) assignment, (2) functions, and/or (3) data structures.

TERMINOLOGY – ‘object’: We will use the term object quite often in future sections. You can think
of an object as anything in R that is returned (printed) by an evaluated expression, anything that you define

4



CHAPTER 1. SOME LANGUAGE ESSENTIALS

via assignment, or anything that is already defined by R (i.e., functions).

ASSIGNMENT: R allows values to be assigned a (symbolic) name, which allows the name to be used to
represent that value in subsequent expressions. The simplest example would be to assign the value of 5 to
the name ‘x’ using the assignment operator (<-):

> x <- 5

The expression x <- 5 can be read as “the name x is assigned the value 5.” The assignment operator <-
consists of a less than sign (<) followed by a minus sign (-) without any spaces between them. The less than
sign ‘points’ to the name receiving the value. In general, no result is printed when a name is assigned to a
value. In order to print the value of the evaluated expression, we must enter the name of the value at the
command line.

> x

[1] 5

A way to evaluate the assignment and to print the evaluated result is to wrap the assignment expression
with a set of parentheses. For example,

> (x <- 5)

[1] 5

As mentioned, once a value has been assigned to a name, that name can be used to represent the value in
subsequent expressions:

> 10 * x + 2

[1] 52

A name can also be ‘re-assigned ’ at any time, and the old value is overwritten with the new:

> x

[1] 5

> x <- 2

> x

[1] 2

As we saw with our arithmetic expressions, spacing around operators is generally disregarded by R, but
notice that adding a space in the middle of an assignment operator <- changes the meaning to ‘less than’
followed by ‘minus’ (conversely, omitting the space when comparing a variable to a negative number has
unexpected consequences). As an example,

> x < -5

[1] FALSE

→ Practice Exercise: At the command line, work through a similar example by assigning the value 10 to
the name ‘y’, evaluating the expression y^2 + 20, and re-assigning the name ‘y’ to the value 8.

IMPORTANT: The value we assign to a name is not limited to a single value. In general, the evalu-
ated value of any expression, which is commonly referred to as an object, can be assigned to a name. For
example, in future sections, we will assign a name to our read-in data set, which will allow us to refer to
our data set by name in all subsequent expressions. Another example would be to assign a name to the
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output of a regression model in order to use certain portions of the model output in subsequent expressions.
In the same sense, an expression is allowed to be on the target side (left side) of an assignment, not just a
(symbolic) name. For example, we can replace (re-assign) the missing values of a variable with a value of zero.

NAMING OBJECTS: There are some limitations as to what can be used to name an object. Specifically,
object names (1) may consist of letters (A-Z and a-z), digits (0-9), periods (‘.’), and the underscore (‘_’);
and (2) must not start with a digit nor underscore, nor with a period followed by a digit. Mathematical
operators, such as +, -, ∗, and /, in addition to other special characters are also not allowed to be used in
object names. And DON’T FORGET , R is case sensitive – so, x and X are two distinct objects.

FUNCTIONS: Almost everything in R is done by invoking functions. Functions in R can do three things:
(1) have values passed to them; (2) return a value; and/or (3) generate side effects, which are anything that
is not the returning of a value. Examples of functions that generate side effects are printing and plotting
functions. Every function in R, whether intrinsic to the language or user-written, is defined using the same
basic statement: FUNname <- function( arglist ) { body }, where FUNname is the name of the function;
arglist is a comma separated list of zero or more arguments that can be passed to the function; and body

contains the expressions that perform the actions of the function. In turn, the format to invoke a function is
to type its name followed by a set of parentheses containing zero or more arguments. In other words, we can
think of calculus with its mathematical functions like f(x) or g(x, y). As John Verzani put it in his book,
‘functions are like pets’ – they don’t come (aren’t invoked) unless we call them by name (case-sensitive and
spelled properly); they have a mouth (the parentheses) that likes to be fed (the arguments to the function),
and they will complain if they are not fed properly (the output of warnings and/or errors). BE AWARE:

1. Because R is case sensitive, so are the names of functions. So, for example, the reshape() and
reShape() functions are two distinct functions.

2. In R, in order to be executed, a function always needs to be invoked with parentheses, even if there
are no arguments explicitly specified between them. As with any other assigned object, typing the
name of an object at the command line and pressing ENTER causes the assigned value of the object
to be printed. In the case of a function, typing only the name of the function (and not including the
parentheses) prints the body of the function.

→ Practice Exercise: At the command line, compare the result of evaluating date (without paren-
theses) and date() (including the parentheses). Similarly, see what happens when you try to quit
R by evaluating only q (without the parentheses).
> date

function ()
.Internal(date())
<environment: namespace:base>

> date()

[1] "Mon Jun 22 09:12:23 2009"

You will notice in this document that we typeset all of the function names with the parentheses in order to
remind us of this.

SPECIFYING FUNCTION ARGUMENTS: A function’s arguments are how values are passed to
the function when it is invoked. The arguments of a function can be an ARGname or an ARGname = VALUE
construct. The argument list can also contain a special type of argument: ... (‘dot dot dot’). An ARGname
argument is often the first argument in a function’s argument list and often represents the main data object
being passed to the function. For example, we can define a function ourFUN that has one formal argument,
x=.

> ourFUN <- function(x) {

+ x + 5

+ }

> ourFUN(x = 2)
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[1] 7

Note, the value of an ARGname argument always has to be specified. Otherwise, you will receive an error.
For example, if we tried to invoke the ourFUN() function without specifying a value for x= (i.e., execut-
ing ourFUN()), we receive the following error: Error in ourFUN(): argument "x" is missing with no
default.

The ARGname = VALUE construct is used to specify a default value for an argument. If you do not specify
a value for that argument when the function is invoked, the default value will be used and evaluated in
the body of the function, as if you passed ARGname = VALUE in the function invocation. However, if you do
specify a value for that argument, the specified value will be used instead of the default value. For example,

> anotherFUN <- function(x, y = 5) {

+ x + y

+ }

> anotherFUN(x = 2)

[1] 7

> anotherFUN(x = 2, y = 7)

[1] 9

Lastly, the ... argument can hold a variable number of arguments, and is mostly used for passing arguments
to other functions invoked in the body of the outer function. For example,

> lastFUN <- function(z, ...) {

+ ourFUN(z) - anotherFUN(z, ...)

+ }

> lastFUN(z = 2)

[1] 0

> lastFUN(z = 2, y = 10)

[1] -5

In lastFUN(z = 2), no additional arguments are passed from the lastFUN() function to the anotherFUN()
function through the ... argument. Therefore, the default value of y= in the anotherFUN() function is
used. In lastFUN(z = 2, y = 10), the y = 10 argument is passed to the anotherFUN() function in the
body of the lastFUN() function.

When invoking a function, arguments may be specified by name using their ARGname tag (e.g., y = 10), or
they may be specified by their position in the order of the list of arguments, which is determined by using
the commas separating the arguments as placeholders. However, specifying arguments by their position can
be dangerous, especially if you reference the order of the arguments incorrectly. It also makes your code
harder to read. A much safer alternative is to specify the first argument by its position and specify all other
arguments using their ARGname tag. The advantage of specifying arguments by their name is that named
arguments may be specified in any order. In addition, specifying arguments by their name makes your code
more easily readable – both for yourself and others. And remember, if you are not changing the default
value, arguments with default values can be omitted from the invocation.

To illustrate how a function’s arguments can be specified, let’s consider the case where I want to use the
read.table() function to read in a data file, samplefile.csv, which is a comma-delimited file with missing
values represented by a question mark (?). Let’s first look at the read.table() function’s arguments using
the args() function, which displays the names and corresponding default values (if any) of a function:
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> args(read.table)

function (file, header = FALSE, sep = "", quote = "\"'", dec = ".",
row.names, col.names, as.is = !stringsAsFactors, na.strings = "NA",
colClasses = NA, nrows = -1, skip = 0, check.names = TRUE,
fill = !blank.lines.skip, strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#", allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(), encoding = "unknown")

NULL

As you can see, the read.table() function has many arguments (20 to be exact) and many argument de-
faults – for example, the default field separator character is white space (sep = ""). In this case, I could
invoke the read.table() function using the following code: read.table("samplefile.csv", sep = ",",
na.strings = "?"). In this example, I specified the file= argument by position (the first argument) and
the sep= and na.strings= arguments by name. I didn’t have to specify any other arguments because I did
not need to change any of their default values. On the other hand, if I wanted to specify all three arguments
using their position (the first, 3rd, and 9th arguments) I would have to use the following code, which is really
difficult to understand: read.table("samplefile.csv", , ",", , , , , , "?").

LOGICAL ARGUMENTS: As shown by the default value of the read.table() function’s header=
argument, arguments are often specified using a logical value of TRUE or FALSE (all capitals and no quotes).
Often, you will see TRUE and FALSE abbreviated to T and F, and in fact T and F are objects which are set to
TRUE and FALSE by default. However, T and F are not reserved objects, which means their default TRUE and
FALSE values can be overwritten (i.e., re-assigned). For example,

> T

[1] TRUE

> T <- 2

> T

[1] 2

This fact can cause a lot of problems when you specify logical arguments with just T or F. Just imagine
assigning T or F to some other value in your code and then, later on, trying to specify a logical argument
of a function with the re-assigned T or F. You may receive a warning or an error, or even worse, you may
not receive a warning or error, in which case the result of the function has probably been grossly affected.
Therefore, I highly suggest that you always use TRUE and FALSE when specifying logical arguments.

NESTED FUNCTIONS: As mentioned, most functions, when invoked, return an evaluated value. This
means that the expression invoking a function can be passed as an argument to yet another function invo-
cation. This is the concept of nested functions. An example would be to calculate the arithmetic mean of a
random sample of ages ranging from 10 to 60 years. To do this, we can use the seq() (sequence) function to
generate the possible ages from 10 to 60 years, the sample() function to generate a random sample of the
possible ages, and the mean() function to calculate the arithmetic mean of the random sample:

> mean(sample(seq(from = 10, to = 60), size = 100, replace = TRUE))

[1] 36.51

FINDING HELP: In general, the args() function is very helpful when you need to verify the argument
name and/or default value of an argument before invoking a function, but it does not give you any further
details regarding each argument. Luckily, R has a built-in help system that allows you to access individual
help files of functions and other language specifics. The help() function will access the help file of a specific
topic, like the mean() function, but you need to know the exact topic name on which the help documenta-
tion is sought. The help() function can be called in several ways, which are all equivalent: help(mean);
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?mean; ?"mean"; or help("mean"). To use the help() function to access the help files on a topic specified
by special or non-conventional characters, for example ∗ or [[, the argument must be enclosed in double or
single quotes, making it a character string (i.e., help("∗")). By default, the help() function only searches
in the packages which have been loaded in memory using the library() function – see the PACKAGES
section for more details. If the help() function’s try.all.packages= argument is specified as TRUE, then
the help() function will search in all (installed) packages. In turn, you can display the help file from a
package not loaded in memory using the help() function’s package= argument. For example, help("bs",
package = "splines"). Details regarding each argument is given in the Arguments and Details sections
of a function’s help file. Other useful sections of most help files are the See also and Examples sections,
which list the topic names of other help files similar to the present one and contains some example code
using the present function, respectively.

In the Windows/Mac versions on R, the help pages can also be accessed via the Help drop-down menu. In
addition, help is available in HTML format on most R installations by calling the help.start() function,
which will launch a Web browser that allows the help pages to be browsed with hyperlinks. The Search En-
gine and Keywords link in the page loaded by help.start() is particularly useful as it contains a high-level
concept list which searches through available functions. It can be a great way to get your bearings quickly
and to understand the breadth of what R has to offer.

An alternative to the help() and help.start() functions is the apropos() function, which returns a list
containing all the objects (functions or assigned variables) whose name contains the character string specified.
Only the packages loaded in memory are searched. An example would be to search all the objects for the
character string “mean”:

> apropos("mean")

[1] "colMeans" "kmeans" "mean" "mean.data.frame"
[5] "mean.Date" "mean.default" "mean.difftime" "mean.POSIXct"
[9] "mean.POSIXlt" "rowMeans" "weighted.mean"

→ Practice Exercise: Let’s look at the read.table() function’s help file – ?read.table or help(read.table).

PACKAGES: R functions are organized into and stored in packages. The contents of a package (i.e., its
functions) are available only when the package is loaded in memory. Thus, it is possible to load only the
packages containing the functions that are needed, which makes R run faster and uses less memory. It is also
very easy to make use of functions that other people have written and compiled into a package. Currently,
over 500 of these ‘contributed’ packages are available on the CRAN website via the Packages link under the
Software section. The packages are listed in alphabetical order, but there is also a CRANTaskViews link, which
allows you to browse through some of the packages by topic and provides tools to automatically install all
packages for special areas of interest. As you can imagine, the packages cover a wide variety of applications,
both statistical and otherwise. The site for each package contains a brief description, the source files, an
index of contents, and a downloadable reference manual.

When you install a released version of R, a specific subset of base packages are automatically installed. The
base packages are considered part of the R source code, contain basic functions that allow R to work, and
are briefly described in the following table.

Package Description
base Base functions
datasets Built-in datasets
grDevices Graphics devices for base and grid graphics
graphics Base graphics functions
grid A rewrite of the graphics layout capabilities, plus some support for interaction
methods Formally defined methods and classes for R objects, plus other programming tools
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splines Regression spline functions and classes
stats Statistical functions
stats4 Statistical Functions using ‘S4 Classes’
tools Tools for package development and administration
utils Utility functions

In addition to these base packages, several recommended packages are also automatically installed when you
install R. The packages are ‘recommended’ since they cover statistical methods often used in data analysis.
They are briefly described in the following table.

Package Description
boot Resampling and bootstrapping methods
class Classification methods
cluster Clustering methods
foreign Read data stored in various formats including Stata, SAS, SPSS, & Epi Info
KernSmooth Methods for kernel smoothing and density estimation (including bivariate kernels)
lattice Lattice (Trellis) graphics
MASS Contains many functions, tools and data sets from the libraries of ‘Modern Applied

Statistics with S’ by Venables & Ripley
mgcv Generalized additive models
nlme Linear and non-linear mixed-effects models
nnet Neural networks and multinomial log-linear models
rcompgen Completion generator for R
rpart Recursive partitioning
spatial Spatial analyses (‘kriging’, spatial covariance, etc)
survival Survival analyses

The location where these base and recommended packages are installed is known as the main library, which
is the directory R_HOME/library, where R_HOME denotes the path to your version of R. On a Linux, Unix, or
Mac machine, R_HOME is /usr/lib/R or /usr/local/lib/R. On a Windows machine R_HOME is C:\Program
Files\R\R-version, where version is the R version number (e.g., 2.5.1). By default, further packages
will be installed into R_HOME/library, as well. It is also possible to have more than one library, so think of
a ‘library’ as just a directory containing installed packages.

Packages can be downloaded and installed from within R using the install.packages() function. If
you are connected to the Internet, you can download and install a package directly from CRAN using
install.packages("pkg )", where pkg is the name of the desired package. R will then ask you to select a
CRAN mirror from which to install the desired package(s) – CRAN is a collection of sites which carry iden-
tical materials and were created as mirror sites to lessen the load on any one server. Personally, I normally
select one of the USA mirrors, such as CA1. If you are not connected to the Internet, you can download and
save a package’s source or binary file from CRAN Packages link and then specify the path to file when you
invoke the install.packages() function. In either case, if the package is installed correctly, R will return
a new command line prompt. In the Windows/Mac versions of R, you will also find a menu called Packages
that provides an interface to install packages. Specifically, if you are connected to the Internet, select Install
package(s). . . from the Packages drop-menu. Next select a CRAN mirror from which to install the desired
package(s) and click OK. Next, from the list of packages, select the one(s) you wish to install and click OK
– you can select more than one package by holding down the Ctrl key. As with the intstall.packages()
function, if the package is installed correctly, R will return a new command line prompt. In addition, you can
use the Packages drop-menu to install a package if you are not connected to the Internet – Install package(s)
from local zip files. . . . IMPORTANT: You need to have administrative rights to your laptop (computer)
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in order to successfully install a package.

When invoked with no arguments specified, the library() function returns the list of packages that are
installed, which includes the above-mentioned base and recommended packages. The library() function is
also used to load a specific package – library(pkg ), where pkg is the installed package. You need to install
a package only once, but, as mentioned, a package’s contents are available only when it is loaded in memory.
It is important to realize that packages must be loaded during every R session you wish to use them in.
Luckily, a subset of the base packages that are automatically installed are also automatically loaded when
you start R: base (obviously), datasets, grDevices, graphics, methods, stats, and utils. You can also
use the search() function to see which packages are currently loaded (whether automatically or explicitly
loaded with the library() function). Each package name is preceded with package:.

> search()

[1] ".GlobalEnv" "package:tools" "package:stats" "package:graphics"
[5] "package:grDevices" "package:utils" "package:datasets" "package:methods"
[9] "Autoloads" "package:base"

Regardless of whether the package has been loaded (but it has to be installed), you can use library(help
= pkg ) or help(package = pkg ) to list the functions (help topics) it contains. You can also read a brief
description of the package by typing packageDescription("pkg ").

It is recommended that you either reinstall your packages or update the existing packages each time the
newest version of R is released, or when a newer version of the package(s) is/are released. Luckily, even
if you are unaware of any updates in the package versions, and you are connected to the Internet, the
update.packages() function can be used to update a single package (update.packages("pkg ")), or to
update all of your installed packages (update.packages() – no arguments specified). When invoked with
no arguments, the update.packages() function downloads the list of available packages and their current
version, compares it with those installed and offers to fetch and install any that have later version on CRAN.
If you are using the Windows or Mac version of R, there will be a Update packages. . . selection under the
Packages drop-menu.

You can unload a specific loaded package using the detach() function – detach("package:pkg "). And
installed packages can be removed (i.e., uninstalled) using the remove.packages() function –
remove.packages(c("pkg1 ", "pkg2 ")), where pkg1 and pkg2 are the package you want to uninstall.

More information regarding packages can be found in the ‘Add-on packages’ chapter of the ‘Installation
and Administration’ manual on the R website (www.r-project.org; click on the Manuals link under the
Documentation heading). The FAQs link on the R website also contains some information. And, the ‘R Help
Desk’ column in the December 2003 edition (Vol. 3/3; pages 37-39) Newsletter discusses ‘Package Manage-
ment’.

→ Practice Exercise: Let’s install and then load the Hmisc package, which we will use in both this document
and the next. As a side, the Hmisc package (i.e. ‘Harrell Miscellaneous’), which was developed by Frank
Harrell, PhD, contains many functions useful for analyzing data, producing high-level graphics, performing
utility operations, importing data sets, making advanced tables, recoding variables, and much more. For this
practice exercise, select the Hmisc package and then click OK if using the Packages drop-menu, or specify
install.packages("Hmisc") if using the command line. If the package is installed correctly, R will return
a new command line prompt. Now, to load the Hmisc package, type library(Hmisc) at the command line
and hit Enter. NOTE , these notes were compiled using Hmisc version 3.4-4.

Before we can do anything else with any functions and assignment, we need to learn more about the types
and structures of data that R assumes and uses.
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DATA TYPES & STRUCTURES: As we have seen, R recognizes a number when we type one. This
also includes negative numbers (e.g., -2). To specify a piece of text (also called a character string), type it
within either single or double quotes, such as ‘cat’ or "Drug X". R also recognizes logical values (also called
boolean values), which are typed as TRUE and FALSE (all capitals and no quotes). And there is a special
value, NA, which represents a missing or unknown value (again, no quotes). There are also three other special
constants: (1) NULL, which is used to indicate an empty object; (2) Inf, which denotes infinity; and (3) NaN
(‘not a number’), which is produced by numerical computations whose results is undefined (e.g., 1/0, 0/0,
or Inf - Inf).

In addition to these basic types of data, R provides a number of data structures that allow multiple values
to be specified as a single object. The data structures are vectors, matrices, arrays, data frames, and lists.
In this document, we will work with vectors, data frames, and lists (briefly). We will discuss all of the data
structures in more detail in the next document.

VECTORS: The vector is the simplest data structure in R. For example, a single value in R (i.e., the
logical value TRUE or the numeric value 2) is actually just a vector of length 1. Vectors are one dimensional
(i.e., have only a length attribute) and consist of an ordered collection of elements. All elements of a vector
must be the same data type – i.e., all numeric, all character (text strings), or all logical – but can also
include missing elements designated with the NA value. There are a number of functions (and an operator)
that can be used to easily construct vectors of any length, including the c() (concatenate) function and the
seq() (sequence) function (and colon, :, operator). The c() (concatenate) function constructs a vector by
joining the supplied elements end-to-end. The elements supplied can be single numeric, character, logical,
and/or missing values. The elements can also be vectors themselves. The only stipulation is that all the
supplied elements must be of the same data type. To use the c() function we merely separate the elements
by commas:

> c(2, 3, 5, 2, 7, 1)

[1] 2 3 5 2 7 1

> c(TRUE, FALSE, FALSE, TRUE)

[1] TRUE FALSE FALSE TRUE

> c("cat", "dog", "bird", "horse")

[1] "cat" "dog" "bird" "horse"

> x <- c(2, NA, 5, NA, NA, 7)

> y <- c(10, 15, 12)

> c(y, x)

[1] 10 15 12 2 NA 5 NA NA 7

If different types of elements are mixed, all will be coerced into a common type, which is usually character.
For example,

> c(1:3, "cat")

[1] "1" "2" "3" "cat"

The seq() (sequence) function is a general tool for generating equidistant series of numbers. The seq()
function has five formal arguments, but only some of them may be specified in any one function invocation.
This causes the seq() function to be invoked in one of four ways:

1. seq(value), where value is an integer. If value is a positive integer, seq(value) generates the
sequence 1, 2, ..., value. If value is a negative integer, seq(value) generates the sequence 1, 0,
..., -value. For example,
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> seq(5)

[1] 1 2 3 4 5

> seq(-5)

[1] 1 0 -1 -2 -3 -4 -5

2. seq(from, to), where from and to specify the beginning and end of the sequence, respectively. This
form generates the sequence from, from+1, (from+1)+1, ..., to if to > from, or the sequence from,
from-1, (from-1)-1, ..., to if to < from. The same sequences can be generated using the colon
(:) operator. In the following examples, the first two invocations and the second two invocations are
equivalent. For example,

> seq(from = 2, to = 10)

[1] 2 3 4 5 6 7 8 9 10

> 2:10

[1] 2 3 4 5 6 7 8 9 10

> seq(from = 10, to = 3)

[1] 10 9 8 7 6 5 4 3

> 10:3

[1] 10 9 8 7 6 5 4 3

from and to need not be integers. In this case, the sequence increments by 1 up to the sequence value
less than or equal to to if to > from, or the sequence decrements by 1 down to the sequence value
greater than or equal to from if to < from. For example,

> 5.7:20.2

[1] 5.7 6.7 7.7 8.7 9.7 10.7 11.7 12.7 13.7 14.7 15.7 16.7 17.7 18.7 19.7

> 10.5:3.25

[1] 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5

3. seq(from, to, by), where from and to are the same as before, and by specifies the increment of the
sequence (default, by = 1). This form generates the sequence from, from+by, (from+by)+by, ..., up
to the sequence value less than or equal to to if to > from and by is positive, or the sequence from,
from-by, (from-by)-by, ..., down to the sequence value greater than or equal to from if to < from
and by is negative. For example,

> seq(from = -1, to = 1, by = 0.2)

[1] -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

> seq(from = 9, to = 1, by = -2)

[1] 9 7 5 3 1

> seq(from = 5.7, to = 11.2, by = 0.4)

[1] 5.7 6.1 6.5 6.9 7.3 7.7 8.1 8.5 8.9 9.3 9.7 10.1 10.5 10.9
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4. seq(from, to, length), where from and to are the same as before, and length specifies the desired
length of the sequence. This form generates the sequence of length equally spaced values from from
to to. As we saw in the second form seq(from, to), if length is not specified, the default by = 1 is
used. For example,

> seq(from = 2, to = 15, length = 7)

[1] 2.000000 4.166667 6.333333 8.500000 10.666667 12.833333 15.000000

NOTE: Assignment can be appropriately incorporated into any of the previous demonstrations of the c()
(concatenate) and seq() functions.

DATA FRAMES: A data frame in R corresponds to what other statistical packages call a ‘data matrix’
or a ‘data set’ – the (2-dimensional) data structure used to store a complete set of data, which consists of
a set of variables (columns) observed on a number of cases (rows). The different columns of a data frame
may be of different data types, but all the elements of any one column must be of the same data type.
As with vectors, the elements of any one column can also include missing elements designated with the NA
value. Most types of data you will want to read into R and analyze are best described by data frames. The
data.frame() function can be used to construct a data frame from scratch. Often, the data arguments you
supply to the data.frame() function will be individual vectors, which will construct the columns of the data
frame. These data arguments can be specified with or without a corresponding column name – either in the
form value or the form COLname = value. For example, we can use the sample() function to generate a
random data frame.

> ourdf <- data.frame(id = 101:110, sex = sample(c("M", "F"), size = 10,

+ replace = TRUE), age = sample(20:50, size = 10, replace = TRUE),

+ tx = sample(c("Drug", "Placebo"), size = 10, replace = TRUE),

+ diabetes = sample(c(TRUE, FALSE)))

> ourdf

id sex age tx diabetes
1 101 M 49 Placebo FALSE
2 102 M 50 Placebo TRUE
3 103 M 20 Placebo FALSE
4 104 M 38 Drug TRUE
5 105 F 40 Placebo FALSE
6 106 M 45 Placebo TRUE
7 107 F 26 Placebo FALSE
8 108 F 22 Placebo TRUE
9 109 M 40 Placebo FALSE
10 110 M 39 Placebo TRUE

With the data.frame() function, character vectors are automatically coerced into factors, which we will
discuss in the next chapter. Also, all invalid characters in column names (e.g., spaces, dashes, or question
marks) are converted to periods (.). We will cover how to construct a data frame by reading in a data file
in the next chapter – the much more convenient way to generate a data frame.

A THOUGHT TO END WITH: Like learning any new programming language, R has a steep learning
curve, in part due to a number of fine points and common pitfalls which may surprise the user at first.
However, taking the time to really learn R will be well worth it in the end – DON’T QUIT!
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Chapter 2

Data Import and Prep

Learning objectives
To understand how to import a delimited text file, obtain the various attributes of a read-in data set, and
customize a data set after input.

Now that we have discussed some of the essentials of the R language, our next logical step would be to
perform some analysis on an actual data set. Based on our knowledge from the first lecture, we could use the
c() (‘concatenate’) and data.frame() functions to construct our data set by typing in the values of each
variable and assigning each vector its corresponding variable name. However, in general, this plan of attack
is quite impractical depending on the size of the desired data set. It also provides a perfect opportunity for
errors to creep into the data set. If the data is already recorded in some format, it’s better to be able to read
it in. The way this is done depends on how the data is stored, as data sets may be found on web pages, as
formatted text files, as spreadsheets, or in many other formats.

MOTIVATING DATA SET: The rest of this document will center around an example data set – a
random subset of the well known Primary Biliary Cirrhosis data set. The full data set contains the data
from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between 1974 and 1984.
Specifically, the trial was a randomized placebo controlled trial of the drug D-penicillamine. The random
subset of the PBC data set that we will be using has been saved as a Microsoft Excel file (pbc.xls). The
file contains N = 100 records (rows) and the following variables (columns):

Variable Name Variable Description
ID Case number
FUDays Number of days between registration and the earlier of death, transplantion, or

study analysis time in July, 1986
Status Status, where 0 = Censored, 1 = Censored due to liver treatment, and 2 = Death
Drug Treatment, where 1 = D-penicillamine and 2 = Placebo
Age Age in days
Sex Gender, Male/Female
Ascites Presence of ascites, No/Yes
Bili Serum bilirubin in mg/dl
Chol Serum cholesterol in mg/dl
Album Albumin in gm/dl
Stage Histological stage of disease

MICROSOFT EXCEL FILES: Your data file is often stored as a Microsoft Excel file, but unfortunately,
R can not directly read such a file. R generally wants to read in a delimited text file. Luckily, it is very
easy to use Microsoft Excel to export your data file in a tab-delimited or comma-delimited form. You can
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then use the read.table() function, which we’ll discuss in detail, to read the exported data file into R. You
can convert a file from Microsoft Excel to another file format by saving it with the Save As command from
the File drop menu. Use the Save as type: drop box to choose the desired file format, such as tab-delimited
text (.txt) or comma-delimited text (.csv). Remember, for most file formats, Excel converts only the active
sheet. To convert the other sheets, switch to each sheet and save it separately.

SOME GOOD PROGRAMMING PRACTICES: Before you read in any data file:

1. Create a directory (folder) where you will keep all your data, code, and output related to a particular
project. This can be thought of as your ‘working directory’ whenever you use R for that particular
project.

→ Practice Exercise: Create a folder on your desktop named IntroToR and save the pbc.xls Mi-
crosoft Excel file to this folder.

2. Start your R session from within your relevant working directory. It is quite common for objects that
have the same name to be created during an analysis (e.g., x, y). Names like this are often meaningful
in the context of a single analysis, but it can be quite hard to decode what they might be when several
analyses have been conducted in the same directory. Starting your R session from within the relevant
working directory will also allow you to easily reference the names of your data files without having
to include long path names (i.e., C:/MyDocuments/MyProjects/ProjectName/.../filename.txt).
Under R for Windows/Mac, use Change dir. . . from the File drop-menu to Browse for and select the
relevant working directory after starting R. For the Linux/Unix versions of R, you can use the cd
(i.e. change directory) command at the shell prompt to move to the relevant working directory before
starting R, or you can use the setwd() function to specify the path (in quotes) to the desired working
directory after starting R. Users of the Windows/Mac versions of R can also use the setwd() function.

→ Practice Exercise: Change your working directory to the IntroToR folder on your desktop. For
example, we could specify setwd("~/Desktop/IntroToR") in the Linux/Unix version of R or
setwd("C:/windows/Desktop/IntroToR") in the Windows/Mac versions of R.

3. Make sure each data file is ‘clean’.

� All variable names are valid (i.e., contain no spaces or special characters).

� Missing values are consistently represented (e.g., NA or a blank cell if originally a Microsoft Excel
file).

� All quotation marks are ‘matched’ (i.e., each opening quotation mark has a closing quotation
mark).

– NOTE: With R, non-numeric text data need not be quoted.

� Microsoft Excel files are appropriately saved as either tab or comma delimited text files.

– Make sure blank cells contain no spaces.
– If saving as a tab delimited text file, make sure all character fields that contain spaces are

wrapped with (single or double) quotation marks (e.g., Disease free to "Disease free").
– If saving as a comma delimited text file, make sure character fields that contain commas are

wrapped with quotation marks and thousands separators are removed from all numeric fields
(e.g., 1,250 to 1250).

→ Practice Exercise: Using the File > Save As technique, convert pbc.xls to a comma-delimited
file (i.e., pbc.csv) and save it to the same folder where pbc.xls is located.

It is also worthwhile to create and use an R code file to completely and cumulatively record your analysis,
including the code to load any necessary packages and to read in your data set. This is easily done using a
text editor such as WordPad (on a Windows machine) or xemacs (on a Linux/Unix machine) – simply type
and/or copy and paste the desired code (and/or output) from the R command line subwindow to your code
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file, and vice versa. Doing so ensures reproducible results. It also allows you to ‘cannibalize’ your code for
other projects.

→ Practice Exercise: Save the Scott.IntroToR.I.R file, which contains the extracted R code from this
lecture, to the same folder where pbc.xls and pbc.csv are located and open it with an appropriate text
editor.

THE read.table() FUNCTION: Whether or not your data set starts out as a Microsoft Excel file, most
often, the data you want to read into R is a simple delimited text file with records corresponding to the
rows and variables to the columns. For such files, the read.table() function is the most flexible function
to use to read-in your data set. The columns of the text file can be separated by blanks, commas, or some
other known separator. And the first line of the text file can also contain a header giving the names of the
variables (i.e., columns) – a highly recommended practice. The read.table() function creates a data frame
from the read in data set. The arguments of the read.table() function, and their default values (if any)
are:

> args(read.table)

function (file, header = FALSE, sep = "", quote = "\"'", dec = ".",
row.names, col.names, as.is = !stringsAsFactors, na.strings = "NA",
colClasses = NA, nrows = -1, skip = 0, check.names = TRUE,
fill = !blank.lines.skip, strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#", allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(), encoding = "unknown")

NULL

The first argument is the file= argument. We will need to specify the name of the data file in quotes,
including the file extension – and DON’T FORGET , R is case sensitive. If the file is not in the current
working directory, the file name must be specified along with its path. The syntax of the path varies de-
pending on operating system, but forward slashes (/; not backslashes) should always be used in the path
name (even in the Windows version of R). For example, in the Windows version of R, use something sim-
ilar to file = "C:/MyDocuments/MyProjects/ProjectName/filename.txt". And in the Unix/Linux ver-
sion of R, use something similar to file = "/home/username/MyDocuments/ProjectName/filename.txt"
(the tilde, ˜, expansion can be used where supported). If the directory name and/or file name contains
spaces, use a backslash before the space. For example,file = "C:/My\ Documents/My\ Projects/Project\
Name/filename.txt". Lastly, the name of the file can also be specified as a complete URL, in which case
the read.table() function reads the website as if it were a local file. For example,
file = "http://www.math.csi.cuny.edu/UsingR/Data/whale.txt". The header= argument is a logical
value (TRUE or FALSE) specifying whether the file contains the names of the columns as its first line – specify
header = TRUE if it does. Like with the data.frame() function, all invalid characters (e.g., spaces, dashes,
or question marks) in the column names are converted to periods (.). The sep= argument allows you to
specify the ‘field separator character’ – the character separating the columns on each line of the file. By
default, sep= is defined to be any whitespace (i.e., sep = ""), which is defined as one or more spaces, tabs,
or newlines. Use sep = " " for space delimited files; use sep = "," for comma-separated files (i.e., .csv
files); and use sep = "\t" for tab-delimited files (i.e., .txt files). The na.strings= argument specifies what
character strings are to be interpreted as NA (missing) values – by default, na.strings = "NA". Blank fields
can be specified as missing values using na.strings = "". You can also specify multiple character strings
by using the c() (concatenate) function – for instance, if NA and N/A should be considered missing values,
then specify na.strings = c("NA", "N/A"). Lastly, specify fill = TRUE when the file’s separator is some
form of whitespace like spaces or tabs and some rows have trailing ‘empty fields’. Doing so implicitly adds
blank fields when the rows have unequal length. See the Arguments section of the read.table() function’s
help file for details regarding the other arguments – help(read.table).

Note, if you incorrectly specify the values that should be considered missing values using the na.strings=
argument, the character(s) representing missing values will be interpreted as an additional value. In turn,
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any numeric variables will be coerced to character fields.

→ Practice Exercise: We’re now ready to import our PBC data file using the read.table() function. Recall,
the name of our file is pbc.csv, the first row does contain column names, and the columns of the delimited
file are separated by commas (i.e., a comma-delimited file). In addition, we need to be aware that missing
values are represented by blank cells in pbc.csv. Putting this all together,

> pbc <- read.table("pbc.csv", header = TRUE, sep = ",", na.strings = "")

→ Practice Exercise: How would you change the previous code if our pbc.xls file had been saved as a tab
delimited file with the first row containing column names and missing values represented by NA?

BE AWARE: The read.table() function can be an inefficient way to read in very large datasets. By
default, the read.table() function needs to read in every column as character data, and then try to figure
out which variables to convert to numeric or factor. For a large dataset, this takes considerable amounts of
time and memory. The performance of the read.table() function can be improved by any of the following:
(1) use the colClasses= argument to specify the classes as one of the atomic vector types (logical, integer,
numeric, complex, character, or perhaps raw) for each column; (2) specify comment.char = ""; and/or (3)
use the nrows= argument to give the number of rows to be read – a mild over-estimate is better than not
specifying this at all. Another alternative is to use the scan() function instead of the read.table() function.

Irregardless of how you read your data file(s) into R, if no errors are given, it is always a good practice to
check that your data was read in correctly. An easy way to do this is to view the attributes of your read in
data set. REMEMBER: In R, your read in data set has the data structure of a data frame.

ATTRIBUTES OF A READ-IN DATA SET: Use the dim() function to check the dimensions (num-
ber of rows and number of columns, respectively) of your data frame. Use the names() function to check the
variable names of your data frame. You can also use the Hmisc package’s contents() function to display
both of these attributes and more. Specifically, the contents() function displays the meta-data of your data
frame, which includes the number of observations (rows) and columns, the variable names, the variable labels
(if any), the variable units of measurement (if any), the number of levels for factor variables (if any), the
storage mode of each variable, and the number of missing values (NAs) for each variable. The contents()
function also displays the maximum number of NAs across all variables, and the level labels of each factor
variable (if any). Lastly, use the head() function to print the first 6 (by default) rows of a data frame.

DON’T FORGET to install and/or load the Hmisc package if you haven’t already done so.

→ Practice Exercise: Let’s use the dim(), names(), Hmisc package’s contents(), and head() functions to
print the attributes of our pbc data frame

> dim(pbc)

[1] 100 11

> names(pbc)

[1] "ID" "FUDays" "Status" "Drug" "Age" "Sex" "Ascites" "Bili"
[9] "Chol" "Album" "Stage"

> library(Hmisc)

> contents(pbc)

Data frame:pbc 100 observations and 11 variables Maximum # NAs:32

Levels Storage NAs
ID integer 0
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FUDays integer 0
Status integer 0
Drug integer 25
Age integer 0
Sex 2 integer 0
Ascites 2 integer 25
Bili double 0
Chol integer 32
Album double 0
Stage integer 2

+--------+-----------+
|Variable|Levels |
+--------+-----------+
| Sex |Female,Male|
+--------+-----------+
| Ascites|No,Yes |
+--------+-----------+

> head(pbc)

ID FUDays Status Drug Age Sex Ascites Bili Chol Album Stage
1 6 2503 2 2 24201 Female No 0.8 248 3.98 3
2 9 2400 2 1 15526 Female No 3.2 562 3.08 2
3 20 1356 2 2 21898 Female No 5.1 374 3.51 4
4 26 1444 2 2 19002 Female No 5.2 1128 3.68 3
5 30 321 2 2 15116 Female No 3.6 260 2.54 4
6 37 223 2 1 22546 Female Yes 7.1 334 3.01 4

From the output of the Hmisc package’s contents() function, we can see that the blank cells in the Drug,
Ascites, Chol, and Stage columns were converted to missing values (NA).

FACTORS: It is common in statistical data to have categorical variables, indicating some subdivision of
data, such as gender, race, disease diagnosis, or tumor stage. In R, categorical variables can be coded with
character values, such as the "No" and "Yes" values of the Ascites variable in our pbc data frame, or
numeric values, such as the 0, 1, and 2 values of the Status variable. In either case, the elements of the
categorical variable may only take one of a finite set of values, such as "male" and "female" for a gender
variable. In R, categorical variables should be defined as factors. This is a data structure that (among other
things) makes it possible to assign meaningful names to the categories – for example, assign "Black" to "B"
and "White" to "W" of a race variable or "Censored" to 0, "Censored due to liver treatment" to 1,
and "Death" to 2 for the Status variable in our pbc data set. Factors are also essential for R to be able
to distinguish between categorical variables and variables whose values have a direct numerical meaning –
for example, in R, the raw 1, 2, and 3 values of Status would be interpreted as a continuous variable in a
regression model, not a categorical one.

At first glance, factors appear to be similar to numeric or character vectors, but they are not. Specifically,
factors are numeric or character vectors that have an associated set of levels – the finite set of values the
categorical variable can take. As an example, let’s use the factor() function to explicitly generate some
factors and show this difference:

> 5:1

[1] 5 4 3 2 1

> factor(5:1)
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[1] 5 4 3 2 1
Levels: 1 2 3 4 5

> c("cat", "horse", "dog", "cat", "dog", "dog")

[1] "cat" "horse" "dog" "cat" "dog" "dog"

> factor(c("cat", "horse", "dog", "cat", "dog", "dog"))

[1] cat horse dog cat dog dog
Levels: cat dog horse

Notice the additional Levels: attribute printed with the factors. As seen, by default, the sorted unique
values of the vector are used to define the levels of the factor. The levels are sorted based on the type of the
supplied vector (i.e., either alphabetical or numerical order). Also, by default, missing values (NA) are not
defined as a level. For example,

> factor(c(TRUE, NA, FALSE, TRUE, FALSE, FALSE, NA))

[1] TRUE <NA> FALSE TRUE FALSE FALSE <NA>
Levels: FALSE TRUE

NOTICE: R prints a missing value (NA) differently depending on whether it is an element of a factor vector
or a vector that has not been defined as a factor. In the previous output, NA was printed as <NA> in the
logical vector that was defined as a factor. On the other hand, NA is printed as merely NA when a plain
numeric, logical, or character vector is printed – see the discussion of the c() (concatenate) function in the
‘Vectors’ section of the first chapter.

It is also important to know that the values of a numeric factor are not interpreted as numeric values. For
example,

> mean(factor(1:5))

[1] NA

Warning message:
argument is not numeric or logical: returning NA in: mean.default(factor(1:5))

An important piece of information to know about factors is that non-logical (case sensitive TRUE and FALSE)
character columns (whether or not enclosed in quotation marks) are automatically converted to factors when
read-in with the read.table() and similar functions. This is apparent when we look at the output of the
Hmisc package’s contents() function of our pbc data frame – the Sex and Ascites variables were converted
to factors. Specifically, an extra column labeled Levels is printed in the initial output and an additional
table of Variable and Levels is also printed. Luckily, with the read.table() function, there are several
arguments (as.is=, colClasses=, and stringsAsFactors=) that allow you to change this if needed – per-
sonally, I always set stringsAsFactors = FALSE in my read.table() invocation and then explicitly define
each factor using the factor() function. In addition, irregardless of how a factor is originally specified (as
numeric or character), the levels of a factor are internally stored as a vector of integers starting at 1. For
example, in the output of contents() function of our pbc data frame, notice the value of the Storage
column for the Sex and Ascites variables – integer.

Up to this point, the factors we have created have used the default process of defining the sorted unique
values (excluding NAs) of the vector as the levels of the factor. However, the factor() function has some
additional arguments that allow us to be even more explicit about how the levels are defined. Specifically,

> args(factor)
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function (x = character(), levels = sort(unique.default(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))

NULL

The levels= argument can be used to explicitly define the levels of a factor. For example, we can construct
a factor with an additional level that is not present in the data:

> factor(c(3, 3, 1, 2, 2), levels = 1:4)

[1] 3 3 1 2 2
Levels: 1 2 3 4

We can also use the levels= argument to change the default order of the levels. For example, we can change
the default order of the levels of a race factor from Black, Other, White (i.e., alphabetical order) to White,
Black, Other.

> factor(c("White", "Black", "Other", "White", "Other", "Black"))

[1] White Black Other White Other Black
Levels: Black Other White

> factor(c("White", "Black", "Other", "White", "Other", "Black"),

+ levels = c("White", "Black", "Other"))

[1] White Black Other White Other Black
Levels: White Black Other

The labels= argument can be used to define a more descriptive label for each level of a factor. For example,
we can add character level labels to a factor that is originally coded with numeric levels.

> factor(c(1, 1, 2, NA, 1, 2), labels = c("Case", "Control"))

[1] Case Case Control <NA> Case Control
Levels: Case Control

IMPORTANT: The labels given in the labels= argument must be in the same order as the factor’s levels.
For example, suppose we want to add labels to a factor representing race with the levels (in order) of W, B, O,
and H. Therefore, you would need to specify labels = c("White", "Black", "Other", "Hispanic") to
properly match the order of the levels. If you had specified labels = c("Black", "Hispanic", "Other",
"White") (alphabetical order), none of the level labels would match the corresponding levels. In addition, if
modifying the order of the levels and defining more descriptive labels, we need to use both the levels= and
labels= arguments.

→ Practice Exercise: Using the factor() function, convert the following character vector to a factor with
the levels (in order) of ‘Strongly disagree’ (SD), ‘Disagree’ (D), ‘Neutral’ (N), ‘Agree’ (A), and ‘Strongly agree’
(SA). NOTE: The solution to this Practice Exercise, and others where the solution is not shown, can be
found in the Scott.IntroToR.I.R code file.

> x <- c("A", "SA", "D", "D", "SA", "SA", "SA", "A", "N", "SD")

The factor() function also allows you to define a special kind of factor in which the levels are ordered, using
its ordered= argument. Specifying ordered = TRUE allows you to distinguish nominal categorical variables
from ordinal ones. For most purposes the only difference between ordered and unordered factors is that the
former are printed showing the ordering of the levels. For example,

> x <- c("A", "SA", "D", "D", "SA", "SA", "SA", "A", "N", "SD")

> y <- factor(x, levels = c("SD", "D", "N", "A", "SA"), labels = c("Strongly disagree",

+ "Disagree", "Neutral", "Agree", "Strongly agree"), ordered = TRUE)

> y
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[1] Agree Strongly agree Disagree Disagree
[5] Strongly agree Strongly agree Strongly agree Agree
[9] Neutral Strongly disagree
Levels: Strongly disagree < Disagree < Neutral < Agree < Strongly agree

As you can see, when printed, the levels of an ordered factor display the ordering relation (<) between the
levels of the factor. This can also be useful when you wish to compare the levels of an ordered factor. For
example,

> y < "Neutral"

[1] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE

We’ll discuss comparison operators, like <, in the second document.

Once a factor has been created, the levels() function can be used to return, reorder, and/or redefine its
levels (including assigning new level labels, defining new levels, and collapsing existing levels into new levels).
To redefine the levels of a factor using the levels() function, we can specify a named list specifying how to
redefine/reorder the levels (i.e., list(NEWlevel = "OLDlevel")). The list can also specify new levels. For
example,

> test <- factor(c("positive", "negative", "negative"))

> levels(test)

[1] "negative" "positive"

> levels(test) <- list(positive = "positive", negative = "negative")

> levels(test)

[1] "positive" "negative"

> levels(test) <- list(Positive = "positive", Negative = "negative")

> test

[1] Positive Negative Negative
Levels: Positive Negative

> levels(test) <- list(Undetermined = "Undetermined", Positive = "Positive",

+ Negative = "Negative")

> test

[1] Positive Negative Negative
Levels: Undetermined Positive Negative

> levels(test) <- list(Combined = c("Undetermined", "Positive"), Negative = "Negative")

> test

[1] Combined Negative Negative
Levels: Combined Negative

As a side note, when manipulating factors, it is always a good idea to generate a frequency table of the factor
both before and after you modify its levels and/or labels – see the table() function, which is explained in
the ‘Tables of categorical variables’ section of the ‘Descriptive Statistics’ chapter.

→ Practice Exercise: Using the levels() function, collapse the five-level factor you created in the previous
practice exercise to a three level factor with the levels of ‘Disagree’ (strongly disagree or disagree), ‘Neutral’,
and ‘Agree’ (agree or strongly agree).
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CUSTOMIZING DATA SETS AFTER INPUT: Now that we’ve read in our data file and have en-
sured it was read in correctly, we may want to make some modifications. There are many ways you can
customize a data frame, including renaming variables, adding new variables, deleting variables, adding or
changing the levels of a factor variable, adding or changing variable labels, and/or adding or changing the
units of measurement of a variable. There are many functions that are useful in performing some of the
modifications mentioned and we could make many of our desired modifications using individual function
invocations, but there is an easier way using the Hmisc package’s upData() function. The Hmisc package’s
upData() function provides a unified framework for updating a data frame. It accomplishes the following,
listed in the order in which the changes are executed:

1. Optionally changes names of variables to lower case.

2. Renames variables.

3. Adds new variables.

4. Recomputes existing variables from the original variables and/or from other variables in the data frame.

5. Changes the storage mode of variables to the most efficient mode.

6. Drops (deletes) variables.

7. Adds, changes, and combines levels of factor variables.

8. Adds or changes variable labels.

9. Adds or changes variable units.

Making any of these changes upfront will allow you take full advantage of any of them during your analyses.
For example, many functions will automatically print variable labels and units as part of their output, making
interpretation of the results a lot easier. Using the Hmisc package’s upData() function also allows you to de-
fine all of the modifications in one function invocation, making all of the modifications much easier to manage.

The arguments of the Hmisc package’s upData() function are (remember, we’ve already loaded the Hmisc
package)

> args(upData)

function (object, ..., rename = NULL, drop = NULL, labels = NULL,
units = NULL, levels = NULL, force.single = TRUE, lowernames = FALSE,
moveUnits = FALSE, charfactor = FALSE)

NULL

Specify the name of the data frame using the object= argument. Specify one or more expression of the
form VARname = expression in the ... argument position to derive new variables or modify old ones. Use
the rename= argument to rename variables by specifying a named vector of old and new variable names
using the c() (concatenate) function – e.g., rename = c(oldVARname1 = "newVARname1", oldVARname2 =
"newVARname2"). Variables are renamed before any other operations are done, so variable names given
inside the other upData() arguments need to use the new names. Use the drop= argument to specify a
vector of variable names (using the c() function) to remove from the data frame. Use the labels= argu-
ment to add or modify existing variable labels by specifying a named vector, like the rename= argument.
Use the units= argument to add or modify existing variable units by specifying a named vector, like the
rename= and labels= argument. Use the levels= argument to add or modify the levels for factor variables
by specifying a named list (not vector) using the list() and c() (concatenate) functions – e.g., levels
= list(VARname1 = c("level1 ", "level2 ", ...), VARname2 = ...). It was important to be aware of
the factor() function’s levels= and labels= arguments and the levels() function in order to understand
the many things you can do with the upData() function’s levels= argument. We will be demonstrating
some of these when we ‘update’ our pbc data frame. Lastly, specifying lowernames = TRUE in an upData()
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function invocation will coerce all the column names to lower-case.

When you invoke the Hmisc package’s upData() function, you can either overwrite the original data frame
by assigning the function invocation to original data frame (e.g., pbc <- upData(pbc, ...)), or you can
assign the function invocation to a new data frame (e.g., new.pbc <- upData(pbc, ...)).

→ Practice Exercise: Let’s make some changes to our pbc data using the Hmisc package’s upData() function.
Specifically, let’s convert the variable names to lower case, and define some variable labels and units (where
appropriate) using the labels= and units= arguments. In addition, let’s convert the Status and Drug
variables to factors and define character level labels for them using the levels= argument. We can also
define the Stage variable as a numeric factor using the factor() function. Lastly, let’s also define some
new variables, ageyrs (age in years), fuyrs (follow-up in years), and censored (collapsed version of status
– Censored/Censored due to liver treatment, Dead), and their corresponding value labels, units, and levels.
Once we’ve made all of these changes, let’s then view the implemented changes using the Hmisc package’s
contents() function.

> pbc <- upData(pbc, lowernames = TRUE, stage = factor(stage, levels = 1:4),

+ ageyrs = age/365.25, fuyrs = fudays/365.25, censored = factor(status),

+ labels = c(ageyrs = "Age", fuyrs = "Follow Up", censored = "Collapsed Survival Status",

+ fudays = "Follow Up", status = "Original Survival Status",

+ drug = "Treatment", sex = "Gender", age = "Age", ascites = "Presence of Ascites",

+ bili = "Serum Bilirubin", chol = "Serum Cholesterol", album = "Serum Albumin",

+ stage = "Histological stage of disease"), units = c(fudays = "days",

+ fuyrs = "years", age = "days", ageyrs = "years", bili = "mg/dL",

+ chol = "mg/dL", album = "mg/dL"), levels = list(status = c("Censored",

+ "Censored due to liver treatment", "Dead"), censored = list(Censored = c(0,

+ 1), Dead = 2), drug = c("D-penicillamine", "Placebo")))

Input object size: 6776 bytes; 11 variables
Modified variable stage
Added variable ageyrs
Added variable fuyrs
Added variable censored
New object size: 13928 bytes; 14 variables

> contents(pbc)

Data frame:pbc 100 observations and 14 variables Maximum # NAs:32

Labels Units Levels Storage NAs
id integer 0
fudays Follow Up days integer 0
status Original Survival Status 3 integer 0
drug Treatment 2 integer 25
age Age days integer 0
sex Gender 2 integer 0
ascites Presence of Ascites 2 integer 25
bili Serum Bilirubin mg/dL double 0
chol Serum Cholesterol mg/dL integer 32
album Serum Albumin mg/dL double 0
stage Histological stage of disease 4 integer 2
ageyrs Age years double 0
fuyrs Follow Up years double 0
censored Collapsed Survival Status 2 integer 0
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+--------+---------------------------------------------+
|Variable|Levels |
+--------+---------------------------------------------+
|status |Censored,Censored due to liver treatment,Dead|
+--------+---------------------------------------------+
|drug |D-penicillamine,Placebo |
+--------+---------------------------------------------+
|sex |Female,Male |
+--------+---------------------------------------------+
|ascites |No,Yes |
+--------+---------------------------------------------+
|stage |1,2,3,4 |
+--------+---------------------------------------------+
|censored|Censored,Dead |
+--------+---------------------------------------------+

Note, I often do not use the upData() function’s levels= argument as I have in this Practice Exercise. On
the other hand, I first, as mentioned, specify stringsAsFactors = FALSE in my read.table() function
invocation, causing all character columns in the read-in data file to remain as character columns (ie, they are
not automatically converted to factors). I then explicitly convert each character column (and other columns
if appropriate) to factors using the factor() function. This allows me to specify both the levels= and the
labels= argument in each factor() function invocation, which in turn makes the pairing of each level with a
corresponding label crystal clear. It also allows me to more easily define factors that have more levels defined
than are present in the data. With all of this in mind, the following is alternative code for reading in our
pbc data and defining all of the appropriate factors – the end result is the same. Notice, unlike previously,
we must explicitly define the Sex and Ascites as factors.

> pbc <- read.table("pbc.csv", header = TRUE, sep = ",", na.strings = "",

+ stringsAsFactors = FALSE)

> contents(pbc)

Data frame:pbc 100 observations and 11 variables Maximum # NAs:32

Storage NAs
ID integer 0
FUDays integer 0
Status integer 0
Drug integer 25
Age integer 0
Sex character 0
Ascites character 25
Bili double 0
Chol integer 32
Album double 0
Stage integer 2

> pbc <- upData(pbc, lowernames = TRUE, status = factor(status, levels = 0:2,

+ labels = c("Censored", "Censored due to liver treatment", "Dead")),

+ censored = status, drug = factor(drug, levels = 1:2, labels = c("D-penicillamine",

+ "Placebo")), sex = factor(sex, levels = c("Female", "Male")),

+ ascites = factor(ascites, levels = c("No", "Yes")), stage = factor(stage,

+ levels = 1:4), ageyrs = age/365.25, fuyrs = fudays/365.25,

+ labels = c(ageyrs = "Age", fuyrs = "Follow Up", censored = "Collapsed Survival Status",

+ fudays = "Follow Up", status = "Original Survival Status",

+ drug = "Treatment", sex = "Gender", age = "Age", ascites = "Presence of Ascites",
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+ bili = "Serum Bilirubin", chol = "Serum Cholesterol", album = "Serum Albumin",

+ stage = "Histological stage of disease"), units = c(fudays = "days",

+ fuyrs = "years", age = "days", ageyrs = "years", bili = "mg/dL",

+ chol = "mg/dL", album = "mg/dL"), levels = list(censored = list(Censored = c("Censored",

+ "Censored due to liver treatment"), Dead = "Dead")))

Input object size: 6360 bytes; 11 variables
Modified variable status
Added variable censored
Modified variable drug
Modified variable sex
Modified variable ascites
Modified variable stage
Added variable ageyrs
Added variable fuyrs
New object size: 13928 bytes; 14 variables

> contents(pbc)

Data frame:pbc 100 observations and 14 variables Maximum # NAs:32

Labels Units Levels Storage NAs
id integer 0
fudays Follow Up days integer 0
status Original Survival Status 3 integer 0
drug Treatment 2 integer 25
age Age days integer 0
sex Gender 2 integer 0
ascites Presence of Ascites 2 integer 25
bili Serum Bilirubin mg/dL double 0
chol Serum Cholesterol mg/dL integer 32
album Serum Albumin mg/dL double 0
stage Histological stage of disease 4 integer 2
censored Collapsed Survival Status 2 integer 0
ageyrs Age years double 0
fuyrs Follow Up years double 0

+--------+---------------------------------------------+
|Variable|Levels |
+--------+---------------------------------------------+
|status |Censored,Censored due to liver treatment,Dead|
+--------+---------------------------------------------+
|drug |D-penicillamine,Placebo |
+--------+---------------------------------------------+
|sex |Female,Male |
+--------+---------------------------------------------+
|ascites |No,Yes |
+--------+---------------------------------------------+
|stage |1,2,3,4 |
+--------+---------------------------------------------+
|censored|Censored,Dead |
+--------+---------------------------------------------+

A THOUGHT TO END WITH: Creating and using an R code file to completely and cumulatively
record your analysis is invaluable. Luckily, it is very easy to type and/or copy and paste the desired code

26



CHAPTER 2. DATA IMPORT AND PREP

(and/or output) from the R command line subwindow to your code file, and vice versa. If you are on a Win-
dows machine, I would recommend formatting your code and output using the Courier New (monospace)
font, which is very similar to what is used in R.

Even though it is very easy create a code file, it is imperative that you try make your code files well readable
and as much self-explaining as possible. This includes

� indenting and using spaces appropriately;

� explicitly specifying function arguments by their ARGname tag;

� wrapping long lines of code by explicitly breaking long expressions;

– Explicitly break long expression by inserting a newline (i.e., a carriage return) after a known
separator that is syntactically relevant. In particular, break a long expression after a comma
separating the arguments of a function; after a logical operator (& = ‘and’ or | = ‘or’) within a
logical statement; or after a plus sign (+) within a formula statement (e.g., Y ~ X1 + X2).

� and adding copious comments to your code.

– Any text following a # on the command line, to the end of the line, is taken as a ‘comment’ and
ignored by R. Comments can be put almost anywhere, except inside quoted strings, and within
the argument list of a function definition. For example,

> 175*(8/5) # convert 175 miles to kms
[1] 280

See the Scott.IntroToR.I.R code file for an illustration of all of these tips. You’ll notice that the Scott.IntroToR.I.R
code file includes the R code to set the working directory (setwd()) and load any necessary packages
(library()).

When all your R code is collected and recorded in a code file, the results can be reproduced at any time. In
addition, if your R code is stored in an external file, say Rcode.R in the current working directory, all of the
expressions can be executed at any time in an R session with the expression source("Rcode.R"). This is
extremely useful if you have defined your own function (as we will discuss in more detail) in an external file
and wish to source the function. The source() function also has a verbose= argument, which (when set to
TRUE) will cause each expression and additional diagnostics to be printed during the parsing and evaluation
of the input file.
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Generating Descriptive Statistics

Learning objective
To understand how to generate frequency tables of categorical data, simple univariate and group-wise sum-
mary statistics of continuous data, and descriptive tables that automatically summarize both continuous and
categorical data.

After successfully reading in our data set and making the desired changes to it, we’re now in the position to
start exploring our data using various descriptive statistics. However, before we do this, we need to briefly
discuss another fundamental of the R programming language.

ACCESSING VARIABLES IN YOUR DATA FRAME: The $ operator is the main way a column of
a data frame can be extracted – that is, you can access the values of a desired column using a dfname$colname
construct, where dfname is the name of your data frame and colname is the name of the desired column.
For example, we can return (print) the first 15 values of ageyrs using

> head(pbc$ageyrs, n = 15)

Age [years]
[1] 66.25873 42.50787 59.95346 52.02464 41.38535 61.72758 33.63450 33.69473 49.13621
[10] 53.50856 32.61328 32.49281 46.51608 67.31006 55.83025

It is important to remember that in order to access the values of a desired column, we must also include the
name of the data frame. Unlike some statistical software programs, in R, you can have many data frames
assigned in memory, so you have to direct R to the data frame you wish to use. Unfortunately, having to type
the name of the data frame each time we reference a variable can be cumbersome when multiple references
are performed. And, as you can imagine, depending on the length of the name of both the data frame and
column, the typed expression can be quite long and inconvenient. For example,

> pbc[pbc$ageyrs > 70 & !is.na(pbc$ageyrs) & pbc$drug == "D-penicillamine" &

+ !is.na(pbc$drug) & pbc$sex == "Female" & !is.na(pbc$sex), c("id",

+ "status")]

Luckily, there are a few alternative ways in R to access the variables of a data frame without involving
the dfname$colname construct. The first alternative, the attach() function, is one that I have to mention
because it is often used in various R documentation, but is the one alternative that I do not recommend.

As its name implies, the attach() function attaches R objects, assigned data frames or lists, to the search
path. The search path is a group of ‘databases’ that R searches when evaluating a named object or function
name. We can print (return) the search path using the search() function. Recall, we’ve encountered the
search() function before in the ‘Packages’ section.
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> search()

[1] ".GlobalEnv" "package:Hmisc" "package:tools" "package:stats"
[5] "package:graphics" "package:grDevices" "package:utils" "package:datasets"
[9] "package:methods" "Autoloads" "package:base"

The ‘databases’ are searched in the order they are printed. Therefore, the global environment database
(.GlobalEnv), which is more often known as your workspace, is the first database searched. Your workspace
contains all the objects you have assigned during an R session, which we will discuss in more detail in the
‘Object Management’ section of the second document. R then searches through the various loaded packages.
The Autoloads entry is R’s way of automatically loading additional installed packages (such as tools) that
are needed by specific functions.

When we attach an assigned data frame or list using the attach() function, it is placed at the number 2
position in the search path. For example,

> attach(pbc)

> search()

[1] ".GlobalEnv" "pbc" "package:Hmisc" "package:tools"
[5] "package:stats" "package:graphics" "package:grDevices" "package:utils"
[9] "package:datasets" "package:methods" "Autoloads" "package:base"

Attaching a data frame or list allows us to access the columns of a data frame (or components of a list) by
simply using their names; we no longer have to direct R through the data frame to find the column. For
example,

> head(ageyrs, n = 15)

Age [years]
[1] 66.25873 42.50787 59.95346 52.02464 41.38535 61.72758 33.63450 33.69473 49.13621
[10] 53.50856 32.61328 32.49281 46.51608 67.31006 55.83025

It is possible to attach more than one data frame (or list) – with the current release of R the search path can
contain at most 20 items. New data frames (or lists) are inserted into position 2 by default, and everything
except .GlobalEnv (i.e., the workspace) moves one step to the right.

Even though you will often see the attach() function used in many of the introductory R documentation, it
can be very misleading if you are not careful with it’s use. Specifically, avoid attaching the same data frame
more than once (e.g., subsets of the data frame) or multiple data frames with some names of variables in
common. In actuality, there may be several objects of the same name in different parts of the search path. In
that case, R chooses the first one (that is, it searches first in the .GlobalEnv, then in pbc, and so forth). For
this reason you need to be a little careful with ‘loose’ objects that are defined in the workspace outside a data
frame since they will be used before any vectors and factors of the same name in an attached data frame.
For example, if you created an assigned object with the same name as one of the columns in your data frame.
For the same reason, it is not a good idea to give a data frame the same name as one of the variables inside it.

Also, always detach the data frame (or list) from the search path as soon as you have finished using its
columns (components). You can remove a data frame from the search path using the detach() function.
For example

> detach("pbc")

> search()

[1] ".GlobalEnv" "package:Hmisc" "package:tools" "package:stats"
[5] "package:graphics" "package:grDevices" "package:utils" "package:datasets"
[9] "package:methods" "Autoloads" "package:base"
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Note, the .Globalenv and package:base items of the search path can not be detached.

Another pitfall of the attach() function is it is not possible to directly assign into an attached list or data
frame (thus, to some extent they are static). For example, suppose we attached a data frame dframe which
contained variables u, v and w. At this point an assignment such as u <- v+w does not replace the component
u of the data frame, but rather masks it with another variable u defined in your workspace at position 1 on
the search path (i.e, the .GlobalEnv). To make a permanent change to the data frame itself, the simplest
way is to resort once again to the $ notation: dframe$u <- v+w. However, the new value of component u is
not visible until the data frame is detached and attached again.

So, even though the attach() function appears very useful, I never use it because of the many pitfalls
associated with it. Plus, I find it makes my code harder to read. More specifically, it is often difficult to
determine what data frame (or list) the columns (components) you are specifying in your code are coming
from, especially if you are performing the same tasks on several subsets of the same data frame or list.
Instead, I use the with() function as an alternative.

Like the attach() function, the with() function saves us some typing by allowing us to not have to use the
dfname$colname construct. However, the with() function essentially performs the attach() and detach()
commands at once, which saves us many headaches. More specifically, the with() function evaluates an R
expression in an environment constructed from some data, which is most often a data frame. The syntax of
the with() function is

> args(with)

function (data, expr, ...)
NULL

where data is the data to use for constructing an environment, and expr is the expression to evaluate, which
will reference various columns in the data frame. Because we have to specify the data frame as an argument,
it is always apparent what data frame the columns are coming from.

By default, the with() function only accepts one expression. For example,

> with(pbc, head(ageyrs))

Age [years]
[1] 66.25873 42.50787 59.95346 52.02464 41.38535 61.72758

However, we can incorporate braces ({ and }) into the with() function, which will allow us to define a block
of R code, which includes multiple expressions. This will be very useful when building plots and will be used
often in the ‘R graphics’ chapter of this document.

Lastly, as an alternative to the with() function, many functions have a data= argument, which allows you
to specify the data frame containing the variables being used in the function call. Some of these functions
include most of the modeling functions and the subset() function. In practice, get into the habit of looking
at the Arguments section of a function’s help file to determine if a data= argument is available.

Now let’s get back to generating various descriptive statistics of our data.

TABLES OF CATEGORICAL VARIABLES: Categorical data are usually described in the form of
frequency tables. In R, frequency tables can be easily generated using the table() function, which uses
one or more cross-classifying variables to build a contingency table of the counts at each combination of the
‘levels’ of the variables. To generate a one-way table, we simply specify one variable in the table() function.
The table() function does not have a data= argument to specify the name of the corresponding data frame,
so we’ll use the with() function instead. For example,
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> with(pbc, table(sex))

sex
Female Male

86 14

The table() function can easily be extended to generate two-, three-, and n-way tables. In general, we
merely need to specify one vector of values for each table margin that is desired. For example,

> with(pbc, table(sex, drug))

drug
sex D-penicillamine Placebo
Female 34 30
Male 6 5

> with(pbc, table(sex, drug, censored))

, , censored = Censored

drug
sex D-penicillamine Placebo
Female 21 19
Male 3 4

, , censored = Dead

drug
sex D-penicillamine Placebo
Female 13 11
Male 3 1

As seen, the first argument in a table() function expression defines the rows of the table (though it is printed
horizontally if there is just one column, as we saw above); the second argument defines the columns; and the
table slices (rows by columns) that correspond to different values of the third argument appear in succession
down the page. In other words, the table() function uses the first two arguments for the main (two-way)
table and the remaining arguments to construct different tables for each combination of the arguments. In
our three-way table example, a two-way table was generated for each level of censored. Any three-way or
higher table can be formatted differently to save space using the ftable() (‘flatten table’) function in place
of the table() function. For example,

> with(pbc, ftable(sex, drug, censored))

censored Censored Dead
sex drug
Female D-penicillamine 21 13

Placebo 19 11
Male D-penicillamine 3 3

Placebo 4 1

The layout of a flat table (or any table) can be modified by shifting the order of the arguments. For example,

> with(pbc, ftable(sex, censored, drug))

drug D-penicillamine Placebo
sex censored
Female Censored 21 19

Dead 13 11
Male Censored 3 4

Dead 3 1
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IMPORTANT, you might not have realized, but missing values are automatically excluded from any fre-
quency table and are not reported. For example, if we sum the frequencies in the sex by drug two-way
table, we notice they only sum to N = 75 not 100 (the number of rows in our data frame) – remember, the
drug variable in our pbc data set has N = 25 missing values. In R, the table() function coerces any of its
arguments to a factor if not already defined as one before tabulating them. In turn, any missing values are
dumped from being tabulated because of the default habits of the factor() function – recall, the factor()
function automatically excludes missing values from the set of levels it defines.

NAs can be included in the tabulation in one of two ways. If the table is being generated from a non-
factor object, specify exclude = NULL in your table()/ftable() function invocation. This will cause the
table()/ftable() function to include an additional category in the table which counts the frequencies of
NAs. For example, let’s tabulate the frequency of chol values rounded to 1 significant digit. I chose to round
the chol values using the signif() function because of the large number of unique values (N = 66 including
NA).

> with(pbc, table(signif(chol, digits = 1), exclude = NULL))

100 200 300 400 500 600 700 900 1000 <NA>
1 14 24 12 8 5 1 1 2 32

If the table is being generated from an already defined factor object, for which NA is not a defined level,
the as.character() function can be used in conjunction with exclude = NULL in your table()/ftable()
function invocation. In general, the as.character() function is used to coerce the type of an object to
character. In this case, coercing the factor variable to a character vector and specifying exclude = NULL
causes the table()/ftable() function to reconstruct the factor with NA as a defined level. For example, we
can use this construct to tabulate the drug variable of our pbc data frame and its missing values.

> with(pbc, table(as.character(drug), exclude = NULL))

D-penicillamine Placebo <NA>
40 35 25

The exclude= argument can also be used to specify non-missing values to be excluded. For example,

> with(pbc, table(stage, exclude = 4))

stage
1 2 3
6 24 39

> with(pbc, table(as.character(stage), exclude = 4))

1 2 3 <NA>
6 24 39 2

→ Practice Exercise: Using the table() function, tabulate the number of subjects whose follow-up was
greater than 5 years were censored due to liver treatment – use the comparison operator > to build a condi-
tional expression that evaluates whether each value of fuyrs is greater than 5. Note, comparison operators
in R are vectorized, meaning they operate on each element of a vector (i.e., element-by-element) and return
a vector. We will discuss vectorization and comparison operators in more detail in the second document.

UNIVARIATE SUMMARY STATISTICS OF CONTINUOUS VARIABLES: There are several
functions in R that easily calculate simple univariate summary statistics of a single continuous variable’s
central tendency, range, spread, and more. These include the mean(), median(), min() (minimum), max()
(maximum), range(), sd() (standard deviation), and quantile() functions. Like the table() function,
none of these functions have a data= argument to specify the name of the corresponding data frame. Instead,
we’ll use the with() function. All the mentioned functions take a numeric vector (i.e., numeric column of
your data frame) as its first (main) argument. For example,
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> with(pbc, mean(ageyrs))

[1] 49.92134

> with(pbc, median(ageyrs))

[1] 49.06776

> with(pbc, min(ageyrs))

[1] 30.57358

> with(pbc, max(ageyrs))

[1] 78.43943

> with(pbc, range(ageyrs))

[1] 30.57358 78.43943

> with(pbc, sd(ageyrs))

[1] 11.89152

> with(pbc, quantile(ageyrs))

Age [years]
0% 25% 50% 75% 100%

30.57358 41.31896 49.06776 58.60370 78.43943

As you can see, the range() function returns a two element vector containing the minimum and maximum
of the supplied numeric vector argument. By default, the quantile() function returns the minimum,
the maximum, and the three quartiles in between, which represent the 0.25, 0.50 (ie, median), and 0.75
quantiles. These default probabilities are defined using the quantile() function’s probs= argument – probs
= seq(0, 1, by = 0.25). This probs= argument can be modified to specify any numeric vector of the
desired probabilities with values in [0, 1]. For example,

> with(pbc, quantile(ageyrs, probs = seq(0, 1, by = 0.1)))

Age [years]
0% 10% 20% 30% 40% 50% 60% 70% 80%

30.57358 34.00520 39.80014 42.59986 44.98234 49.06776 52.00986 56.50568 61.11540
90% 100%

67.03162 78.43943

IMPORTANT: All of these functions have a na.rm= argument, which is a logical value (TRUE or FALSE)
indicating whether NAs (missing values) should be stripped from the numeric vector data argument before
the computation proceeds. By default, na.rm = FALSE, which causes all of these functions to return NA if
the supplied numeric vector contains missing values – in R, any operation involving NAs returns an NA. For
example, let’s try to calculate the mean serum cholesterol (chol) value in our pbc data frame – recall, chol
has N = 32 missing values.

> with(pbc, mean(chol))

[1] NA

As mentioned, specifying na.rm = TRUE will explicitly remove any missing values before the computation is
evaluated.
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> with(pbc, mean(chol, na.rm = TRUE))

[1] 381.6176

There are many other basic statistics functions in R that have a similar na.rm= argument, but only some have
a default value of TRUE. In addition, many functions have other na.X= arguments that dictate how missing
values should be treated. For example, the lm() (linear model) function has a na.action= argument that
is specified as "na.fail", "na.omit", or "na.exclude". Make sure you look in the function’s help file to
ensure any missing values are handled correctly.

→ Practice Exercise: Use the mean(), and sd() functions to calculate the lower- and upper-limits of a 95%
confidence interval around the mean of age (in years).

MORE ON MISSING VALUES: The following results may seem surprising. Note, arithmetic, compar-
ison, and logic operators in R, which we will discuss in more detail in the second document, are vectorized,
meaning they operate on each element of a vector (i.e., element-by-element).

> x <- c(9, 5, 12, NA, 2, NA, NA, 1)

> x + 5

[1] 14 10 17 NA 7 NA NA 6

> x > 2

[1] TRUE TRUE TRUE NA FALSE NA NA FALSE

> x == NA

[1] NA NA NA NA NA NA NA NA

In general, any operator (arithmetic, comparison, or logical) performed on an NA returns an NA. Therefore,
using x == NA to test whether an element is equal to NA does not work. Instead, you must use the is.na()
function, which returns a logical vector that indicates if each element is missing (NA). For example (the ! =
‘not’),

> is.na(x)

[1] FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE

> x > 2 & !is.na(x)

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

Missing values (NAs) can cause problems in a number of functions. It is always a good idea to look at an
individual function’s help file to determine how it will handle NAs.

→ Practice Exercise: Use the is.na() and table() functions to tabulate the number of missing ascites
values.

GROUP-WISE SUMMARY STATISTICS OF CONTINUOUS VARIABLES: Up to this point
we have generated univariate summary statistics of single continuous variables ignoring any other possible
classifying categorical variables. However, you will often want to generate summary statistics of continuous
variables at each level of various categorical ones, or at each combination of several categorical variables.
Such summaries are often referred to as group-wise summary statistics. Like univariate summary statistics,
there are many functions in R that can be used to generate group-wise summary statistics. However, we
will only cover the Hmisc package’s summary.formula() function in this document. The Hmisc package’s
summary.formula() function works from three main arguments: the formula=, method=, and data= argu-
ments. In general, the formula= argument specifies the continuous variable you would like to summarize
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and the categorical variable(s) that specify the groups using a formula interface of LHS ~ RHS. The method=
argument specifies whether the continuous variable should be summarized separately for each categorical
variable specified (method = "response") or jointly for the cross-classification of the specified categorical
variables (method = "cross"). And the data= argument specifies the data frame from which the continuous
and categorical variables should come. Therefore, unlike with the table() and univariate summary statistics
functions mentioned, we will not need to use the dfname$colname construct or the with() function. With
these three main arguments in mind, let’s discuss the method = "response" and method = "cross" forms
of the Hmisc package’s summary.formula() function in more detail.

REMEMBER, when using the summary.formula() function, DON’T FORGET to load the Hmisc
package with the library() function (i.e., library(Hmisc)) if you haven’t already done so. If you haven’t
previously installed the package, you must do this first.

In the method = "response" form, which is actually the default method of the Hmisc package’s summary.formula()
function, a numeric ‘response’ variable is specified on the LHS of the formula and one or more ‘independent’
variables are specified on the RHS of the formula separated by + signs. In turn, as mentioned, the response
variable is summarized separately for each independent variable. By default, the mean of the response
variable is the summary statistic calculated for each ‘level’ of each independent variable. For example,

> summary.formula(bili ~ censored + sex, data = pbc, method = "response")

Serum Bilirubin N=100

+-------------------------+--------+---+--------+
| | |N |bili |
+-------------------------+--------+---+--------+
|Collapsed Survival Status|Censored| 68|1.967647|
| |Dead | 32|5.534375|
+-------------------------+--------+---+--------+
|Gender |Female | 86|2.998837|
| |Male | 14|3.785714|
+-------------------------+--------+---+--------+
|Overall | |100|3.109000|
+-------------------------+--------+---+--------+

Notice, the defined variable labels and level labels were automatically shown in the resulting table (a benefit
of using the Hmisc package’s upData() function discussed in the second chapter of this document).

You can change the function used to summarize the data in each cell by incorporating the fun= argument.
For example, we can easily calculate the range instead of the mean.

> summary.formula(bili ~ censored + sex, data = pbc, method = "response",

+ fun = range)

Serum Bilirubin N=100

+-------------------------+--------+---+-----+-----+
| | |N |bili1|bili2|
+-------------------------+--------+---+-----+-----+
|Collapsed Survival Status|Censored| 68|0.4 | 8.6 |
| |Dead | 32|0.6 |25.5 |
+-------------------------+--------+---+-----+-----+
|Gender |Female | 86|0.4 |25.5 |
| |Male | 14|0.9 | 9.5 |
+-------------------------+--------+---+-----+-----+
|Overall | |100|0.4 |25.5 |
+-------------------------+--------+---+-----+-----+
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The function you specify with the fun= argument can even be self-defined. For example,

> summary.formula(bili ~ censored + sex, data = pbc, method = "response",

+ fun = function(x) {

+ c(Median = median(x), Min = min(x), Max = max(x))

+ })

Serum Bilirubin N=100

+-------------------------+--------+---+------+---+----+
| | |N |Median|Min|Max |
+-------------------------+--------+---+------+---+----+
|Collapsed Survival Status|Censored| 68|1.05 |0.4| 8.6|
| |Dead | 32|3.55 |0.6|25.5|
+-------------------------+--------+---+------+---+----+
|Gender |Female | 86|1.35 |0.4|25.5|
| |Male | 14|2.70 |0.9| 9.5|
+-------------------------+--------+---+------+---+----+
|Overall | |100|1.60 |0.4|25.5|
+-------------------------+--------+---+------+---+----+

You’ll notice that a final row labeled Overall is automatically (by default) calculated and printed, which
specifies the global summary of the response variable. You can suppress this calculation and printing by spec-
ifying overall = FALSE in your summary.formula() function invocation. In addition, unlike the univariate
summary statistics functions mentioned, the Hmisc package’s summary.formula() function by default also
removes any missing values from the response variable before calculating any summary statistics – na.rm =
TRUE. For example,

> summary.formula(chol ~ drug + ascites, data = pbc, method = "response",

+ fun = median)

Serum Cholesterol N=68, 32 Missing

+-------------------+---------------+--+-----+
| | |N |chol |
+-------------------+---------------+--+-----+
|Treatment |D-penicillamine|36|335.0|
| |Placebo |32|324.5|
+-------------------+---------------+--+-----+
|Presence of Ascites|No |64|329.5|
| |Yes | 4|288.5|
+-------------------+---------------+--+-----+
|Overall | |68|329.5|
+-------------------+---------------+--+-----+

If an independent variable(s) specified on the RHS of the formula contain(s) more missing values than the
response variable then missing values are counted as their own category when subsetting the response variable
by the ‘levels’ of each categorical variable – na.include = TRUE. For example,

> summary.formula(fuyrs ~ drug + ascites, data = pbc, method = "response",

+ fun = median)

Follow Up N=100

+-------------------+---------------+---+--------+
| | |N |fuyrs |
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+-------------------+---------------+---+--------+
|Treatment |D-penicillamine| 40|4.746064|
| |Placebo | 35|3.953457|
| |Missing | 25|3.885010|
+-------------------+---------------+---+--------+
|Presence of Ascites|No | 70|4.580424|
| |Yes | 5|1.062286|
| |Missing | 25|3.885010|
+-------------------+---------------+---+--------+
|Overall | |100|4.343600|
+-------------------+---------------+---+--------+

You can suppress the inclusion of the missing categories by specifying na.include = FALSE in your summary.formula()
function invocation. Lastly, there are two additional modifications of the method = "response" form of the
Hmisc package’s summary.formula() function worth mentioning, but are outside the scope of this introduc-
tory document and so will not be covered in detail. Specifically, (1) more than one continuous response
variable can be specified on the LHS of the formula and (2) one or more continuous independent variables
can be specified on the RHS of the formula. In case (1), each response variable is summarized separately for
each independent variable. In case (2), any continuous independent variable (of at least 10 unique values)
is, by default, stratified into groups based on its quartiles. The response variable(s) is/are then summarized
based on each quartile.

→ Practice Exercise: Use the Hmisc package’s summary.formula() function with method = "response"
and the quantile() function to calculate the minimum, 0.25 quantile, median, 0.75 quantile, and maximum
value of ageyrs for each level of sex, censored, and stage. In addition, incorporate the round() function
by modifying the fun= argument to be a self-defined function such that the calculated quantiles are rounded
to 2 decimal places.

The method = "cross" form of the Hmisc package’s summary.formula() function is very similar to the
method = "response" form. Like the method = "response" form, the method = "cross" form calculates
the mean of the response variable by default and the summary function used can be modified using the fun=
argument. It returns (prints) an N column and, by default, a ‘combined’ row labeled ALL. Also by default, it
removes any missing values from the response variable before calculating any summary statistics and returns
(prints) missing categories (labeled NA or Missing) if applicable. However, there are some differences between
the method = "response" and method = "cross" forms regarding the specification of the formula, how the
response variable is summarized, and the form of the output. Like the method = "response" formula, a
numeric response variable is specified on the LHS of the method = "cross" formula, but the RHS of the
method = "cross" formula can only specify up to three independent variables on the RHS of the formula.
Also, recall, when method = "cross", the response variable is jointly summarized for the cross-classification
of the categorical independent variable(s). In addition, the form of the output of the method = "cross"
form is a data frame, but it may not look like one depending on how the formula is specified. Specifically,
the output really only looks like a data frame if the RHS of the formula specifies one or three independent
variables. For example,

> summary.formula(bili ~ ascites, data = pbc, method = "cross", fun = median)

UseMethod by ascites

ascites N bili
1 No 70 1.6
2 Yes 5 7.1
3 NA 25 1.5
4 ALL 100 1.6

> summary.formula(bili ~ drug + censored + sex, data = pbc, method = "cross",

+ fun = function(x) {
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+ c(Mean = mean(x), SD = sd(x), Median = median(x), Min = min(x),

+ Max = max(x))

+ })

function by drug, censored, sex list(x = ) by drug, censored, sex { by drug, censored, sex NULL by drug, censored, sex

drug censored sex N Mean SD.bili Median Min Max
1 D-penicillamine Censored Female 21 1.304762 1.173233 0.90 0.4 5.5
2 Placebo Censored Female 19 1.784211 1.682677 1.00 0.4 6.4
3 NA Censored Female 19 2.021053 2.278542 1.00 0.6 8.1
4 ALL Censored Female 59 1.689831 1.748467 1.00 0.4 8.1
5 D-penicillamine Dead Female 13 3.238462 2.087478 3.20 0.6 7.1
6 Placebo Dead Female 11 8.254545 8.798791 5.10 0.8 25.5
7 NA Dead Female 3 8.433333 6.995951 7.10 2.2 16.0
8 ALL Dead Female 27 5.859259 6.494510 3.60 0.6 25.5
9 D-penicillamine ALL Female 34 2.044118 1.824445 1.15 0.4 7.1
10 Placebo ALL Female 30 4.156667 6.205708 2.10 0.4 25.5
11 NA ALL Female 22 2.895455 3.766200 1.35 0.6 16.0
12 ALL ALL Female 86 2.998837 4.333142 1.35 0.4 25.5
13 D-penicillamine Censored Male 3 4.333333 2.458319 3.50 2.4 7.1
14 Placebo Censored Male 4 4.250000 3.535062 3.75 0.9 8.6
15 NA Censored Male 2 2.050000 1.343503 2.05 1.1 3.0
16 ALL Censored Male 9 3.788889 2.719579 3.00 0.9 8.6
17 D-penicillamine Dead Male 3 2.633333 1.234234 2.30 1.6 4.0
18 Placebo Dead Male 1 1.500000 NA 1.50 1.5 1.5
19 NA Dead Male 1 9.500000 NA 9.50 9.5 9.5
20 ALL Dead Male 5 3.780000 3.350672 2.30 1.5 9.5
21 D-penicillamine ALL Male 6 3.483333 1.973238 2.95 1.6 7.1
22 Placebo ALL Male 5 3.700000 3.299242 1.90 0.9 8.6
23 NA ALL Male 3 4.533333 4.404921 3.00 1.1 9.5
24 ALL ALL Male 14 3.785714 2.829476 2.70 0.9 9.5
25 D-penicillamine Censored ALL 24 1.683333 1.664114 1.05 0.4 7.1
26 Placebo Censored ALL 23 2.213043 2.221241 1.00 0.4 8.6
27 NA Censored ALL 21 2.023810 2.182408 1.10 0.6 8.1
28 ALL Censored ALL 68 1.967647 2.010750 1.05 0.4 8.6
29 D-penicillamine Dead ALL 16 3.125000 1.936147 3.20 0.6 7.1
30 Placebo Dead ALL 12 7.691667 8.612935 4.35 0.8 25.5
31 NA Dead ALL 4 8.700000 5.737014 8.30 2.2 16.0
32 ALL Dead ALL 32 5.534375 6.116588 3.55 0.6 25.5
33 D-penicillamine ALL ALL 40 2.260000 1.893823 1.60 0.4 7.1
34 Placebo ALL ALL 35 4.091429 5.844171 2.10 0.4 25.5
35 NA ALL ALL 25 3.092000 3.784609 1.50 0.6 16.0
36 ALL ALL ALL 100 3.109000 4.153010 1.60 0.4 25.5

However, if the RHS of the formula specifies two independent variables then the output is printed in a table
format, where the levels of the first independent variable denote the rows, the levels of the second independent
variable denote the columns, and the values in each cell represent the summary of the response variable. For
example,

> summary.formula(bili ~ censored + sex, data = pbc, method = "cross",

+ fun = function(x) {

+ c(Mean = mean(x), SD = sd(x), Median = median(x), Min = min(x),

+ Max = max(x))

+ })
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function by censored, sex list(x = ) by censored, sex { by censored, sex NULL by censored, sex

+-------+
|N |
|Mean |
|SD.bili|
|Median |
|Min |
|Max |
+-------+
+--------+--------+--------+--------+
|censored| Female | Male | ALL |
+--------+--------+--------+--------+
|Censored| 59 | 9 | 68 |
| |1.689831|3.788889|1.967647|
| |1.748467|2.719579|2.010750|
| |1.00 |3.00 |1.05 |
| |0.4 |0.9 |0.4 |
| | 8.1 | 8.6 | 8.6 |
+--------+--------+--------+--------+
|Dead | 27 | 5 | 32 |
| |5.859259|3.780000|5.534375|
| |6.494510|3.350672|6.116588|
| |3.60 |2.30 |3.55 |
| |0.6 |1.5 |0.6 |
| |25.5 | 9.5 |25.5 |
+--------+--------+--------+--------+
|ALL | 86 | 14 |100 |
| |2.998837|3.785714|3.109000|
| |4.333142|2.829476|4.153010|
| |1.35 |2.70 |1.60 |
| |0.4 |0.9 |0.4 |
| |25.5 | 9.5 |25.5 |
+--------+--------+--------+--------+

AUTOMATIC SUMMARIES OF BOTH CATEGORICAL AND CONTINUOUS DATA: So far
we have had to summarize each categorical and continuous ‘response’ variable using various functions and
a separate function invocation for each ‘response’ and desired summary. In turn, we’ve been generating a
lot of bits and pieces of output. It would be a lot more efficient if we could use one function to generate
one table that appropriately summarized each of several categorical and/or continuous ‘response’ variables
both ‘overall’ and for each ‘level’ of a possible grouping categorical variable. Such a thing is possible with
a third method of the Hmisc package’s summary.formula() function – method = "reverse". With method
= "reverse", the variable specified on LHS of the formula is actually the variable that is used to stratify all
the variables specified on the RHS of the formula – the reverse of normal formula specification. Furthermore,
the single variable specified on the LHS must be a categorical variable (either a factor, character, or discrete
numeric). For example, if we wanted to summarize fuyrs and chol across the levels of sex, we would use
the formula sex ~ fuyrs + chol. With this type of specification, the one or more variables specified on
the RHS of the formula are broken down one at a time by the ‘dependent’ variable specified on the LHS of the
formula. That is, the one or more variables specified on the RHS of the formula are appropriately summarized
at each ‘level’ (i.e., unique value) of the variable specified on the LHS of the formula.

With method = "reverse", continuous variables are, by default, summarized by the 25th, 50th (i.e., me-
dian), and 75th quantiles, and categorical variables are described by frequencies and (column) percentages.
Unfortunately, there is not a fun= argument that allows you to modify the summary statistics used. How-
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ever, the mean and standard deviation can be printed in addition to these three quantiles, which we will
demonstrate momentarily. By default, any numeric variable that has at least 10 unique values is deemed ‘con-
tinuous’ (continuous = 10). Therefore, by default, any numeric variable that has less than 10 unique values
(i.e., a discrete numeric variable) is summarized as a categorical variable. If you wish to summarize a discrete
numeric variable as a continuous one, use the continuous= argument to modify the number of unique levels
needed to be interpreted as ‘continuous.’ By default, any character, factor, or discrete numeric variables are
deemed categorical. This includes logical vectors, which are coerced to a discrete numeric vector of 0s and 1s.

Here’s an example:

> summary.formula(sex ~ ageyrs + chol + drug + stage, data = pbc,

+ method = "reverse")

Descriptive Statistics by Gender

+---------------------------------+---+--------------------------+--------------------------+
| |N |Female |Male |
| | |(N=86) |(N=14) |
+---------------------------------+---+--------------------------+--------------------------+
|Age [years] |100|41.20808/47.10883/57.75086|45.28405/52.12320/67.89322|
+---------------------------------+---+--------------------------+--------------------------+
|Serum Cholesterol [mg/dL] | 68| 257/321/442 | 292/346/566 |
+---------------------------------+---+--------------------------+--------------------------+
|Treatment : Placebo | 75| 47% (30) | 45% ( 5) |
+---------------------------------+---+--------------------------+--------------------------+
|Histological stage of disease : 1| 98| 7% ( 6) | 0% ( 0) |
+---------------------------------+---+--------------------------+--------------------------+
| 2 | | 25% (21) | 21% ( 3) |
+---------------------------------+---+--------------------------+--------------------------+
| 3 | | 37% (31) | 57% ( 8) |
+---------------------------------+---+--------------------------+--------------------------+
| 4 | | 31% (26) | 21% ( 3) |
+---------------------------------+---+--------------------------+--------------------------+

The N column reports the number of non-missing values for each variable. You’ll also notice that in addition
to any defined variable labels and level labels, defined units of a continuous variable are also automatically
shown in the resulting table.

As you noticed in the previous example, by default, with method = "reverse", no ‘overall’ summary statis-
tics are calculated for each variable (overall = FALSE). Use overall = TRUE to add an additional column,
titled as Combined, which reports these ‘overall’ summary statistics. For example,
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> summary.formula(sex ~ ageyrs + chol + drug + stage, data = pbc,

+ method = "reverse", overall = TRUE)

Descriptive Statistics by Gender

+---------------------------------+---+--------------------------+--------------------------+--------------------------+
| |N |Female |Male |Combined |
| | |(N=86) |(N=14) |(N=100) |
+---------------------------------+---+--------------------------+--------------------------+--------------------------+
|Age [years] |100|41.20808/47.10883/57.75086|45.28405/52.12320/67.89322|41.31896/49.06776/58.60370|
+---------------------------------+---+--------------------------+--------------------------+--------------------------+
|Serum Cholesterol [mg/dL] | 68| 257.0/321.0/442.0 | 292.0/346.0/566.0 | 258.5/329.5/450.5 |
+---------------------------------+---+--------------------------+--------------------------+--------------------------+
|Treatment : Placebo | 75| 47% (30) | 45% ( 5) | 47% (35) |
+---------------------------------+---+--------------------------+--------------------------+--------------------------+
|Histological stage of disease : 1| 98| 7% ( 6) | 0% ( 0) | 6% ( 6) |
+---------------------------------+---+--------------------------+--------------------------+--------------------------+
| 2 | | 25% (21) | 21% ( 3) | 24% (24) |
+---------------------------------+---+--------------------------+--------------------------+--------------------------+
| 3 | | 37% (31) | 57% ( 8) | 40% (39) |
+---------------------------------+---+--------------------------+--------------------------+--------------------------+
| 4 | | 31% (26) | 21% ( 3) | 30% (29) |
+---------------------------------+---+--------------------------+--------------------------+--------------------------+
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We can also generate only the ‘overall’ summary statistics of each variable by not specifying a variable on the
LHS of the formula (e.g., ~ ageyrs + chol). If there is no LHS variable specified, the summary.formula()
function assumes that there is only one group in the data and only one column of summaries will appear.
Also, if there is no LHS variable specified in the formula, the method= argument defaults to "reverse"
automatically. Here’s an example,

> summary.formula(~ageyrs + chol + drug + stage + sex, data = pbc,

+ method = "reverse")

Descriptive Statistics (N=100)

+---------------------------------+---+--------------------------+
| |N | |
+---------------------------------+---+--------------------------+
|Age [years] |100|41.31896/49.06776/58.60370|
+---------------------------------+---+--------------------------+
|Serum Cholesterol [mg/dL] | 68| 258.5/329.5/450.5 |
+---------------------------------+---+--------------------------+
|Treatment : Placebo | 75| 47% (35) |
+---------------------------------+---+--------------------------+
|Histological stage of disease : 1| 98| 6% ( 6) |
+---------------------------------+---+--------------------------+
| 2 | | 24% (24) |
+---------------------------------+---+--------------------------+
| 3 | | 40% (39) |
+---------------------------------+---+--------------------------+
| 4 | | 30% (29) |
+---------------------------------+---+--------------------------+
|Gender : Male |100| 14% (14) |
+---------------------------------+---+--------------------------+

So far, all of the examples we have shown have explicitly specified all of the variables on the RHS of the
formula. With method = "reverse", you may wish to summarize every variable in your data frame, or in
a subset of your data frame – which can be a lot of typing depending on how many variables there are.
Luckily, there is a shortcut that can be used to specify all of the variables in the data frame that is specified
as the data= argument. Specifically, use a ‘.’ (period) on the RHS of your formula. For example, if we
wanted to summarize all of the variables in our pbc data frame, we would use the formula ~ ., with an op-
tional variable specified on the LHS of the formula. We can also use the subset() function and its select=
argument (and/or its subset= argument) to specify a subset of the desired data frame as the data= argument.

With method = "reverse" and a variable specified on the LHS of the formula, we can also specify test
= TRUE to perform association tests between the variable on the LHS and each variable on the RHS of the
formula. The tests used are specified in the conTest= and catTest= arguments. By default, the continuous
and categorical tests of association used are the Wilcoxon rank-sum or Kruskal-Wallis test using the F
distribution (i.e., the Hmisc package’s spearman2() function), and the Pearson chi-square test, without the
continuity correction (i.e., the chisq.test() function with correct = FALSE), respectively. For example,
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> summary.formula(sex ~ ageyrs + chol + drug + stage, test = TRUE,

+ data = pbc, method = "reverse")

Descriptive Statistics by Gender

+---------------------------------+---+----------------------------+----------------------------+------------------------------+
| |N |Female |Male | Test |
| | |(N=86) |(N=14) |Statistic |
+---------------------------------+---+----------------------------+----------------------------+------------------------------+
|Age [years] |100| 41.20808/47.10883/57.75086| 45.28405/52.12320/67.89322| F=2.37 d.f.=1,98 P=0.127 |
+---------------------------------+---+----------------------------+----------------------------+------------------------------+
|Serum Cholesterol [mg/dL] | 68| 257/321/442 | 292/346/566 | F=1.23 d.f.=1,66 P=0.271 |
+---------------------------------+---+----------------------------+----------------------------+------------------------------+
|Treatment : Placebo | 75| 47% (30) | 45% ( 5) | Chi-square=0.01 d.f.=1 P=0.93|
+---------------------------------+---+----------------------------+----------------------------+------------------------------+
|Histological stage of disease : 1| 98| 7% ( 6) | 0% ( 0) |Chi-square=2.67 d.f.=3 P=0.446|
+---------------------------------+---+----------------------------+----------------------------+------------------------------+
| 2 | | 25% (21) | 21% ( 3) | |
+---------------------------------+---+----------------------------+----------------------------+------------------------------+
| 3 | | 37% (31) | 57% ( 8) | |
+---------------------------------+---+----------------------------+----------------------------+------------------------------+
| 4 | | 31% (26) | 21% ( 3) | |
+---------------------------------+---+----------------------------+----------------------------+------------------------------+
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You can also optionally specify overall = TRUE with test = TRUE. In this case, the tests are correctly
performed (i.e., they ignore the values in the Combined column).

As you probably noticed, the way the output of the Hmisc package’s summary.formula() function with
method = "reverse" is printed by default is not that desirable. For instance, there are varying numbers of
decimal places and not all levels of all categorical variables are shown. Luckily there is a print method that cor-
responds to the summary.formula() function with method = "reverse" output – print.summary.formula.reverse().
We can specify our method = "reverse" form of our summary.formula() function invocation as the data ar-
gument to a print.summary.formula.reverse() method invocation and use the print.summary.formula.reverse()
arguments to print the output as desired.

Specifically, use the digits= argument to specify the number of significant digits to print. By default, the
current value of the digits system option (i.e., options("digits")) is used, which is 7.

By default, the number of non-missing observations for each RHS variable (i.e., the N column) is printed only
if any of the counts of non-missing values of the RHS variables differs from the total number of non-missing
values of the LHS variable. Specify prn = TRUE to always print the number of non-missing observations for
each RHS variable.

You can modify the way the frequencies and column percentages for categorical variables are printed using
the npct= and pctdig= arguments. In general, the npct= argument specifies which counts are to be printed to
the right of percentages. By default, only the numerator of the percentage is printed (npct = "numerator").
Use npct = "both" to print both numerator and denominator, which is very useful when your data (both
the LHS and RHS variables) contain missing values. You can also specify npct = "denominator" or npct =
"none". The pctdig= argument specifies the number of digits to the right of the decimal place for printing
percentages. By default, pctdig = 0, so percents will be rounded to the nearest percent.

By default, for method="reverse", summary.formula() function objects will be printed by removing ‘redun-
dant’ entries from percentage tables for binary categorical variables – exclude1 = TRUE. This means that
only one of the two levels for any binary categorical variable will be printed. For example, only the Placebo
level of drug was summarized in our printed output. The idea is that, for a binary categorical variable, if
you know the frequency of one level and the denominator then you can easily calculate the frequency of the
other level. To override this, use exclude1 = FALSE.

Going one step further, you probably noticed that the summary of the first level of any categorical variable
(binary or more levels) was printed on the same line as the variable label – long = FALSE. To print the
result for the first level on a new line, use long = TRUE.

When you use test = TRUE, you can optionally specify the pdig=, eps=, and prtest= arguments to control
the number of digits to the right of the decimal place for printing p-values, the p-value ‘cutoff’, and the
test statistic components that are printed, respectively. By default, pdig = 3, eps = 0.001, which mean
any p-values less than 0.001 will be printed as < 0.001, and prtest = c("P", "stat", "df", "name"),
which means the name of the test statistic (F or Chi-square), the value of the test statistic, the degree(s)
of freedom, and the p-value are all printed. An alternative is to use prtest = "P", which prints only the
p-values.

Lastly, specify prmsd = TRUE to print the mean and standard deviation of a continuous variable in addition
to the three quantiles. Keep in mind though, that this will make the individual columns even wider.

As an example, let’s incorporate some of these printing arguments,

> print(summary.formula(sex ~ ageyrs + chol + drug + stage, overall = TRUE,

+ method = "reverse", data = pbc), digits = 3, npct = "both",

+ pctdig = 2, exclude1 = FALSE, long = TRUE)
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Descriptive Statistics by Gender

+-----------------------------+---+--------------+--------------+--------------+
| |N |Female |Male |Combined |
| | |(N=86) |(N=14) |(N=100) |
+-----------------------------+---+--------------+--------------+--------------+
|Age [years] |100|41.2/47.1/57.8|45.3/52.1/67.9|41.3/49.1/58.6|
+-----------------------------+---+--------------+--------------+--------------+
|Serum Cholesterol [mg/dL] | 68| 257/321/442 | 292/346/566 | 258/330/450 |
+-----------------------------+---+--------------+--------------+--------------+
|Treatment | 75| | | |
+-----------------------------+---+--------------+--------------+--------------+
| D-penicillamine | | 53.1% 34/64 | 54.5% 6/11 | 53.3% 40/75 |
+-----------------------------+---+--------------+--------------+--------------+
| Placebo | | 46.9% 30/64 | 45.5% 5/11 | 46.7% 35/75 |
+-----------------------------+---+--------------+--------------+--------------+
|Histological stage of disease| 98| | | |
+-----------------------------+---+--------------+--------------+--------------+
| 1 | | 7.14% 6/84 | 0.00% 0/14 | 6.12% 6/98 |
+-----------------------------+---+--------------+--------------+--------------+
| 2 | | 25.00% 21/84 | 21.43% 3/14 | 24.49% 24/98 |
+-----------------------------+---+--------------+--------------+--------------+
| 3 | | 36.90% 31/84 | 57.14% 8/14 | 39.80% 39/98 |
+-----------------------------+---+--------------+--------------+--------------+
| 4 | | 30.95% 26/84 | 21.43% 3/14 | 29.59% 29/98 |
+-----------------------------+---+--------------+--------------+--------------+

DIVERTING SCREEN OUTPUT TO A FILE: As you can imagine, with all of the printing argu-
ments we just discussed, we might have some problems printing a wide table to the screen – as seen when we
specified test = TRUE and overall = TRUE. That’s why I suggest using the sink() function, which diverts
R output to a file, to write the summary.formula() with method = "reverse" output to a file instead of
the screen. In turn, you can print the paper in a landscape format instead of a portrait one. Doing so
will increase your chances of having the wide table print nicely. To start the diversion of the output, the
sink() function is invoked with the file= argument specifying the name of the file to write to (possibly
including the path – if no path is specified, the file is created in the current working directory). In turn, a
file connection with that named file is established for the duration of the diversion. Once the connection is
established, you then evaluate any desired expressions at the command line prompt. Any results that are
normally returned (printed) to the screen are written to the named file. Once you have evaluated all desired
expressions, the diversion of the output is ended by invoking sink() (no formal arguments specified; actually
invoking sink(file = NULL)). For example,

> sink("output.txt")
> print(summary.formula(drug ~ ageyrs + censored,
+ data = pbc, method = "reverse", overall = TRUE, test = TRUE),
+ digits = 3, exclude1 = FALSE, long = TRUE)
> sink()

You can write more output to the same file by specifying append = TRUE in your subsequent sink() function
invocations. Otherwise, any previous output is overwritten if ‘sinked’ to the same file.

In general, you can use the sink() function to divert any screen output to a file. In turn, it is very helpful
to take advantage of the many print() functions. Doing so will allow you to customize how the object
is printed to the screen, and therefore diverted to the file – as we demonstrated with the print of the
summary.formula() function output. As we will see in the next section, there are print functions for hun-
dreds of different types of objects. Other helpful functions to use in conjunction with the sink() function
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are the cat() and paste() functions, which we discuss in the ‘Data Export’ section of the second document.

The major draw back to the sink() function is that it doesn’t write the invoked function expressions to the
specified file. Therefore the file contains only evaluated results, not the function expressions used to generate
those results. If you are interested in capturing this information too, I would recommend copying desired
output that has been returned (printed) to the screen and pasting it into your code file below the function
expression that generated it. In turn, you can use the # symbol to comment out the copied output.

In the Windows version of R you also have two options under the File drop-menu: (1) Print. . . ; or (2) Save
to file. . . . These two options will print or save, respectively, the whole command line subwindow including
all submitted function expressions and all returned output and warning/error messages.

Lastly, another option for generating reproducible research with R and LATEX is Sweave – see the ‘Sweave,
part I: Mixing R and LATEX’ article by Friedrich Leisch in the December 2002 issue of the R News newslet-
ter, and http://www.ci.tuwien.ac.at/~leisch/Sweave/ for more information. Feel free to also check-out
my ‘Reproducible Research with R, LATEX, and Sweave’ lecture on my website.

→ Practice Exercise: Let’s summarize ageyrs, sex, bili, chol, album, ascites, drug, censored, and fuyrs
across the levels of stage. Let’s generate an ‘overall’ summary for each variable and test for any associations
between stage and any of the ‘response’ variables. Let’s direct the output to a file named "output.txt"
and modify the printed output to include the mean and standard deviation of all continuous variables, to
‘round’ to three significant digits, to show both the numerator and denominator of the frequencies, to print
the percentages to two decimal places, to show both levels of all binary categorical variables, to print the first
level of all categorical variable on a new line, and to print only the p-values (rounded to 4 decimal places)
as the test output. Let’s then open the output.txt file with an appropriate text editor and see the result –
you might have to turn off any word-wrapping to see the output nicely.

A THOUGHT TO END WITH: The action of many functions in R depend on the kind of object given
as the main argument. More specifically, these functions act with respect to the class (i.e., the definition)
of the object specified as its main argument. These functions are called generic. In turn, for any generic
function, there can be a number of different class specific methods where each method is a different function
that corresponds to the action to be taken for a particular class of objects. For example, the summary()
function is generic and generates a different summary for a vector, a data frame, or a formula:

> summary(pbc$ageyrs)

Min. 1st Qu. Median Mean 3rd Qu. Max.
30.57 41.32 49.07 49.92 58.60 78.44

> summary(pbc)

id fudays status
Min. : 6.0 Min. : 216 Censored :62
1st Qu.:118.8 1st Qu.:1150 Censored due to liver treatment: 6
Median :238.0 Median :1586 Dead :32
Mean :223.2 Mean :1870
3rd Qu.:313.2 3rd Qu.:2546
Max. :417.0 Max. :4453

drug age sex ascites bili
D-penicillamine:40 Min. :11167 Female:86 No :70 Min. : 0.400
Placebo :35 1st Qu.:15092 Male :14 Yes : 5 1st Qu.: 0.800
NA's :25 Median :17922 NA's:25 Median : 1.600

Mean :18234 Mean : 3.109
3rd Qu.:21405 3rd Qu.: 3.600
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Max. :28650 Max. :25.500

chol album stage censored ageyrs
Min. : 120.0 Min. :1.960 1 : 6 Censored:68 Min. :30.57
1st Qu.: 258.5 1st Qu.:3.260 2 :24 Dead :32 1st Qu.:41.32
Median : 329.5 Median :3.530 3 :39 Median :49.07
Mean : 381.6 Mean :3.518 4 :29 Mean :49.92
3rd Qu.: 450.5 3rd Qu.:3.775 NA's: 2 3rd Qu.:58.60
Max. :1128.0 Max. :4.240 Max. :78.44
NA's : 32.0

fuyrs
Min. : 0.5914
1st Qu.: 3.1478
Median : 4.3436
Mean : 5.1208
3rd Qu.: 6.9692
Max. :12.1916

> summary(ageyrs ~ drug, data = pbc)

Age N=100

+---------+---------------+---+--------+
| | |N |ageyrs |
+---------+---------------+---+--------+
|Treatment|D-penicillamine| 40|50.90849|
| |Placebo | 35|47.76525|
| |Missing | 25|51.36044|
+---------+---------------+---+--------+
|Overall | |100|49.92134|
+---------+---------------+---+--------+

When a generic function is called, R uses a process called method dispatch to determine which class specific
method to use. Specifically, the class of the object specified as the main argument is first determined, which
is a character vector of at least one element returned by the class() function. For example,

> class(pbc)

[1] "data.frame"

> class(pbc$ageyrs)

[1] "labelled"

> class(ageyrs ~ drug)

[1] "formula"

Each element of the class of the object is then compared to each method of the generic function, which is
returned by the methods() function, until one matches a method. For example,

> methods(summary)

[1] summary.agnes* summary.aov summary.aovlist
[4] summary.areg.boot summary.clara* summary.connection
[7] summary.data.frame summary.Date summary.default
[10] summary.diana* summary.dissimilarity* summary.ecdf*
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[13] summary.factor summary.fanny* summary.find.matches
[16] summary.formula summary.glm summary.impute
[19] summary.infl summary.ldBands summary.lm
[22] summary.loess* summary.manova summary.matrix
[25] summary.mChoice summary.mlm summary.mona*
[28] summary.nls* summary.packageStatus* summary.pam*
[31] summary.POSIXct summary.POSIXlt summary.ppr*
[34] summary.prcomp* summary.princomp* summary.shingle*
[37] summary.silhouette* summary.stepfun summary.stl*
[40] summary.table summary.transcan summary.trellis*
[43] summary.tukeysmooth*

Non-visible functions are asterisked

Note, the message no methods are found is returned if a function is not generic,(e.g., methods(paste)).
In general, the name of a class specific method of a generic function is the name of the generic function
followed by a period followed by the name of the class. So, in the case where we specified ageyrs ~ drug as
the main argument of the summary() function, the class of the object was determined to be "formula" and
the class specific summary.formula() function was chosen. When we specified pbc as the main argument,
which has a class of "data.frame", the class specific summary.data.frame() function was chosen.

If no element of the class matches a method or an object has no class, then the default method is used. For
example, when we specified pbc$ageyrs as the first argument of the generic summary() function, which has
a class of "labelled", the default summary.default() function was chosen.

This method dispatch procedure is apparent when you look at the body of a generic function, like the
print() function. Specifically, you will see the UseMethod() function.

> print

function (x, ...)
UseMethod("print")
<environment: namespace:base>

The UseMethod() function notes the class of the object, and then calls the relevant method for that class of
object.

These concepts of class and methods are central to object-oriented programming. Object-orientation simplifies
the programming of a language, like R, by accommodating the fact that you will have conceptually similar
methods for different types of data, even though the implementations will have to be different. For example,
it generally makes sense to summarize many kinds of data objects, but the way they are summarized will
depend on what the data object is. With object-orientation, if you want to summarize an object, you don’t
need to find out what type of object it is, then try to remember the proper function to use on that type
of object, and then do it. You merely use the generic summary() function and the right thing happens. In
other words, the end result for the user is fewer function names to remember.

As an example, we have been using the Hmisc package’s summary.formula() function for the majority of this
chapter. Surprisingly, we could have evaluated all of the summary.formula() expressions in this chapter us-
ing the generic summary() function from the base package – as seen above. In the same sense, we mentioned
the Hmisc package’s print.summary.formula.reverse() function, but actually used the generic print()
function instead. This is possible because R is an object-oriented programming language. In addition to the
summary() and print() functions, the plot() function is one of many other generic functions.

Understanding the concept of object-oriented programming and method dispatch is indispensable when you
need to consult a function’s help file. For instance, if you weren’t aware that the plot() function is a generic
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function, you would quickly become frustrated trying to use the plot help file (i.e., help(plot)) to determine
which arguments you can specify when plotting various objects. As we can see, the plot function’s arguments
are not very specific:

> args(plot)

function (x, y, ...)
NULL

However, if you determined the class of the object you were trying to plot using the class() function and
determined its corresponding class specific method using the methods() function, then you could consult the
class specific method’s help file. As an example, suppose I was trying to plot an object of class stepfun, an
object generated by the step function stepfun(), then I would consult the class specific plot.stepfun()
function’s help file, and become aware of the following arguments:

> args(plot.stepfun)

function (x, xval, xlim, ylim = range(c(y, Fn.kn)), xlab = "x",
ylab = "f(x)", main = NULL, add = FALSE, verticals = TRUE,
do.points = TRUE, pch = par("pch"), col.points = par("col"),
cex.points = par("cex"), col.hor = par("col"), col.vert = par("col"),
lty = par("lty"), lwd = par("lwd"), ...)

NULL

Even looking at the help file of a function’s default method (e.g., plot.default()) is more helpful than
looking at the help file of the generic function:

> args(plot.default)

function (x, y = NULL, type = "p", xlim = NULL, ylim = NULL,
log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes, panel.first = NULL,
panel.last = NULL, asp = NA, ...)

NULL

Understanding the concept of object-oriented programming and method dispatch is also indispensable when
you wish to look at the body of a function to truly understand what it is doing. As we have shown before,
typing the name of a function without parentheses at the command line and pressing return will return
(print) the body of the function. Unfortunately, ‘non-visible’ functions (as shown with an asterisk in the
output of a methods() function expression) don’t follow this common rule. Instead, use the getAnywhere()
and argsAnywhere() functions to return (print) the body and arguments of a ‘non-visible’ function. For
example, getAnywhere(summary.ecdf).
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R Graphics

Learning objective
To understand how to incorporate high-level and low-level plotting functions and graphical parameters to
generate a customized graph.

TRADITIONAL GRAPHICS: R provides the usual range of standard statistical plots, including scat-
terplots, boxplots, histograms, barplots, and basic 3D plots. Figure 4.1 on page 51 shows some examples from
Paul Murrell’s R Graphics book (Chapman & Hall/CRC, 2006). In R, these basic plots can be produced by
a single function call, but plots can also be considered merely as starting points for producing more complex
images. For example, in the first four cases in Figure 4.1 on page 51, the basic plot type has been augmented
by adding additional labels, lines, and axes. This ability to add several graphical elements together to create
the final result is a fundamental feature of R graphics. And, as demonstrated in the last case in Figure 4.1
on page 51, this ability also allows you to create a new plot ‘from scratch’ when no existing plot provides a
sensible starting point for creating the final plot that you desire.

TRELLIS GRAPHICS: In addition to these traditional statistical plots, R also provides an implementa-
tion of trellis plots via the lattice package. Trellis plots embody a number of design principles proposed by
Bill Cleveland in his The Elements of Graphing Data and Visualizing Data books that are ‘aimed at ensuring
accurate and faithful communication of information via statistical plots.’ These principles are evident in a
number of new plot types and in the default choice of colors, symbol shapes, and line styles provided by
trellis plots. Furthermore, trellis plots provide a feature known as ‘multi-panel conditioning,’ which creates
multiple plots by splitting the data being plotted according to the levels of other variables. Figure 4.2 on
page 52 shows an example of a multi-panel trellis plot. The data are yields of several different varieties of
barley at six sites, over two years. The plot consists of six ‘panels,’ one for each site. Each panel consists of
a dotplot showing yield for each site with different symbols used to distinguish different years, and a ‘strip’
showing the name of the site.

In this document and the second document, we will only cover the traditional graphics system, which mainly
consists of functions in the graphics and grDevices packages. If you are interested in learning more about
trellis plots and the lattice package, I would highly recommend the book R Graphics by Paul Murrell
(Chapman & Hall/CRC, 2006). We will also discuss some of the functions in the Hmisc package, as we have
done in previous section. Unlike the Hmisc package, the graphics package is automatically installed with R
and is loaded in every R session. REMEMBER, when using the functions in the Hmisc package, DON’T
FORGET to load the Hmisc package with thelibrary() function (i.e., library(Hmisc)) if you haven’t
already done so. If you haven’t previously installed the package, you must do this first.

BUILDING PLOTS IN LAYERS: Traditional R graphics follow a ‘painters model,’ which means that
graphical output occurs in steps, with later output (possibly) obscuring any previous output that it overlaps.
More specifically, in R, a traditional graphics plot is created by first calling a high-level plotting function
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Figure 4.1: Examples of traditional graphics plots produced using R.
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Figure 4.2: An example trellis plot produced using R.
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that creates a ‘complete’ plot. This means that with high-level plotting functions, axes, labels and titles are
automatically generated, where appropriate, and unless you request otherwise. In addition, high-level plot-
ting functions always start a new plot, erasing the current plot if necessary. Examples of high-level plotting
functions are the (generic) plot(), hist() (histogram), and boxplot() functions. Sometimes, though, the
high-level plotting function doesn’t produce exactly the kind of plot you desire. In this case, low-level plot-
ting functions can be used to add more output (such as points, lines or text) to the current plot. Examples of
low-level plotting functions are the points(), legend(), and mtext() (margin text) functions. In actuality,
some high-level plotting functions can also be forced to act like low-level ones. With all of this in mind, it
is helpful to think of building your graph in layers until the desired final product is created. The ‘Plot from
scratch’ in Figure 4.1 is a good example of building a plot in layers – first the dotted and gray reference
lines were added to the defined plotting grid; then the x-axis was added, then the rectangles, and then the
text. Because of this ‘painters model’, the only way to ‘edit’ graphical output is to modify and rerun the R
code, or to produce output in a format that can be edited using third-party software. So, BE PATIENT.
Creating the ‘final’ version of your graph takes a lot of trial-and-error.

ARGUMENTS OF PLOTTING FUNCTIONS: As we have seen with other non-plotting functions,
all high- and low-level plotting functions have formal arguments that are specific to a particular function.
For example, the boxplot() function has width= and boxwex= arguments (among others) for controlling the
width of the boxes in the plot, and the barplot() function has a horiz= argument for controlling whether
bars are drawn horizontally rather than vertically. In turn, various aspects of the graphical output can be
modified or completely replaced. However, you are not limited to arguments that are specific to a single
high- or low-level plotting function.

For high-level plotting functions, in addition to function-specific arguments, there are several arguments
that are ‘standard’ in the sense that many high-level plotting functions will accept them. Specifically, most
high-level plotting functions will accept graphical parameter arguments that control such things as the ap-
pearance of axes and labels, and the range of the axes scales. It is usually possible to modify the default
range of the axes scales on a plot by specifying the xlim= and/or ylim= arguments in the high-level function
invocation, which are each specified as two element vectors containing the minimum and maximum values
(e.g., xlim = c(0, 50)). There is also a set of arguments for modifying the default labels (if any) on a
plot: main= for a title, sub= for a sub-title, xlab= for an x-axis label, and ylab= for a y-axis label. Each
of these arguments is specified as a character string. The title specified with the main= argument (if any)
is placed at the top of the plot in a large font, and the sub-title specified with the sub= argument is placed
just below the x-axis in a smaller font. Some high-level plotting functions have an axes= argument (by
default TRUE), which allows you to suppress the drawing of the axes and therefore produce customized axes
instead. Lastly, some high-level plotting function have an add= argument (by default FALSE), which, if set to
TRUE, forces the function to act as a low-level plotting, superimposing the high-level plot onto the current plot.

Lastly, most high- and low-level plotting functions will also appropriately accept graphical parameter argu-
ments that control such things as data symbols, axes, color, line type and width, and text font, justification,
magnification, and rotation. In many cases though, these arguments are not given as explicitly named ar-
guments to the high- or low-level function, but are accepted instead via a ... argument. These unspecified
graphical parameter arguments are a subset of the formal arguments of the par() function.

THE par() FUNCTION: The par() function is the main function used to access and modify numerous
graphical parameters. These parameters describe and control things such as the general appearance of
graphical output (the colors and line types that are used to draw lines, the fonts that are used to draw text,
etc.), but also describe and control such things as the size and placement of the plot regions and coordinate
systems. Invoking the par() function with no specified arguments will result in a complete listing of the
graphical parameters you may set and their current values. Specific graphical parameters can be queried by
supplying specific parameter names as arguments to the par() function. For example, the following code
queries the current values of the col= (color) and lty= (line type) parameters.

> par(c("col", "lty"))
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$col
[1] "black"

$lty
[1] "solid"

And specific parameters can be modified by specifying a value via an argument with the appropriate pa-
rameter name. For example, par(col = "red", lty = "dashed") sets new values for the col= and lty=
arguments.

As mentioned, a specific subset of the par() function’s arguments can be set not only via the par() function,
but can also be used as arguments to other high- and low-level plotting functions, where appropriate. These
arguments include:

Group Argument Description
Points pch= data symbol type (‘point character’)

type= type of plot (points, lines, both)
Lines lty= line type (solid, dashed)

lwd= line width
Text adj= justification of text

cex= size of text (magnification multiplier)
font= font face (bold, italic) for text
las= rotation of text in margins

Color col= color of lines and data symbols

On the other hand, some graphics settings can be set only via the par() function, which include:

Group Argument Description
Plotting regions & Margins mar= size of figure margins (lines of text)

oma= size of outer margins (lines of text)
Multiple plots mfrow= number of figures on a page
Overlaying output new= has a new plot been started?

See the par() function’s help file and the second document for a complete list and detailed description
of the available arguments. We will be using many of these arguments soon.

TEMPORARY/PERSISTENT ALTERATIONS OF GRAPHICAL PARAMETERS: Modifying
traditional graphical parameters via the par() function has a persistent effect. That is, parameters specified
in this way hold until a different parameter is specified via another par() function invocation. In other
words, when a graphical parameter is modified using the par() function, all future invocations of high- and
low-level plotting functions will be appropriately affected by that new parameter, as if you set a ‘default’
value for that parameter. This ‘default’ parameter will be used by all subsequent plotting functions unless
an alternative is given. In contrast, graphical parameters may also be temporarily modified by specifying
a new value in the invocation of a high- or low-level plotting function such as the plot() function. The
following code demonstrates this idea. First, the line type is permanently set as dashed using the par()
function. Therefore, in the subsequent line plot (plot(y, type = "l")), the line will be dashed. However,
in the next plot, a temporary line type parameter of lty = "solid" is specified, which causes the line in
this plot to be solid. Lastly, when the third plot is drawn, the permanent line type parameter of lty =
"dashed" comes back into effect and thus the line is again dashed.

> y <- rnorm(20)
> par(lty = "dashed")
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> plot(y, type = "l") # line is dashed
> plot(y, type = "l", lty = "solid") # line is solid
> plot(y, type = "l") # line is dashed

HISTOGRAMS, STRIPCHARTS, and BOXPLOTS: Very often, a histogram or boxplot is used to
graphically display the distribution of a continuous variable, which can be generated using the hist() and
boxplot() functions, respectively. By default, the hist() function generates a histogram of the given data
values (a numeric vector; often a numeric column from a data frame) based on equally-spaced breaks. The
height of each rectangle is proportional to the number of data values falling within the bordering breaks.
By default, the y-axis is labeled Frequency, the x-axis is labeled with the variable name, and a main title
is generated – Histogram of .... We can use the ylab=, xlab=, and main= arguments, respectively, to
modify any of these defaults.

> with(pbc, hist(ageyrs, xlab = label(ageyrs), main = paste("Histogram of",

+ label(ageyrs))))
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You’ll notice that most plotting functions, like the hist() function, do not have a data= argument, so we
will be using the with() function as needed. Also, the Hmisc package’s label() function not only allows us
to define a variable’s label, but it also allows us to return (print) a variable’s label – in this case, a variable
label for ageyrs was defined in our upData() function invocation. Like the with() function, the label()
function saves us some typing, but the label for a variable has to be already defined to take advantage of
the label() function. We also used the paste() function to easily generate a main title. In general, the
paste() function concatenates character strings.

As an alternative to the histogram, the boxplot() function graphically displays the five-number summary
of a continuous variable, which contains the minimum, the lower hinge, the median, the upper hinge, and
the maximum – see the fivenum() function help file for more information (help(fivenum)). The hinges
essentially give the same information as the quartiles. Like the hist() function, the main data argument of
the boxplot() function is a numeric vector (often a numeric column from a data frame). In addition, by
default, the y-axis is not labeled, and a main title is not given. If desired, these can be specified using the
ylab=, and main= arguments, respectively.

> with(pbc, boxplot(album, ylab = label(album), main = paste("Boxplot of",

+ label(album))))
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In all boxplots, the two most outer lines show the largest/smallest observations that fall within a distance
of 1.5 times the box size from the nearest hinge. If any observation falls farther away, the additional points
are considered ‘extreme’ values (outliers) and are shown as open circles.

It is often useful to take the boxplot one step further by also showing where the raw data points fall along
the y-axis. The stripchart() function produces a one dimensional scatter plot (i.e., dot plot) of the given
data. By default, the stripchart is horizontal (vertical = FALSE) and coincident points are overplotted
(method = "overplot"). We will specify vertical = TRUE and method = "jitter" to generate a vertical
stripchart where a small amount of noise (in the x-direction) is added to each data point so coincident points
are easily distinguished. In order to superimpose the stripchart on top of the boxplot, we will specify add =
TRUE, causing the high-level stripchart() plotting function (by default, add = FALSE) to act like a low-level
plotting function. We will also specify outline = FALSE in the boxplot() function invocation to suppress
the plotting of the outlier. We are doing this because the outlier will also be plotted by the stripchart()
function invocation.

> with(pbc, {

+ boxplot(album, outline = FALSE, ylab = label(album), main = paste("Boxplot of",

+ label(album)))

+ stripchart(album, vertical = TRUE, method = "jitter", pch = 1,

+ add = TRUE)

+ })
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We also specified pch = 1 (open circle) in the stripchart() function invocation to modify the point char-
acter. The Hmisc package’s show.pch() function (invoked without specifying any arguments) can be used
to display the definition of the available pch= parameters. Alternatively, we could have changed to color of
the points instead of the point character using the col= argument (e.g., col = "gray"). You’ll also notice
the incorporation of braces ({ and }) into the with() function. Recall, by default, the with() function
only accepts one expression. Using the braces allow us to define a block of R code, which includes multiple
expressions.

The boxplot() function can also generate side-by-side boxplots illustrating the distribution of a continuous
variable at each level of a categorical grouping variable. To do so, we can use the boxplot() function’s
formula interface to specify the data argument – y ~ grp, where y is a numeric vector of data values to
be split into groups according to the grouping variable grp. y and grp (usually a factor) are most often
columns in a data frame. The stripchart() function can also be specified using a similar formula interface.
In addition, when generating a side-by-side boxplot, specify varwidth = TRUE in your boxplot() function
invocation to draw the boxes with widths proportional to the square-root of the number of observations in
each group.

> with(pbc, {

+ boxplot(album ~ stage, outline = FALSE, varwidth = TRUE, xlab = label(stage),

+ ylab = label(album), main = paste("Boxplot of", label(album),

+ "by\n", label(stage)))

+ stripchart(album ~ stage, method = "jitter", pch = 1, vertical = TRUE,

+ add = TRUE)

+ })
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We specified the \n in the main= argument to break the title over two lines (i.e., insert a new line). As
an alternative, we could have specified the cex.main= argument (as a value <1) in the plot() function to
shrink the size of the main title.

→ Practice Exercise: Let’s generate (1) a histogram of bili, (2) a single boxplot overlaid with a stripchart of
bili, and (3) side-by-side boxplots of bili across the levels of drug overlaid with a corresponding stripchart.
Your plots should include a main title, x- and y-labels, and should remove repeated plotting of any outliers.

SCATTERPLOTS, BARPLOTS, and DOTPLOTS: Graphical exploratory data analysis often in-
cludes generating scatter plots between all pertinent continuous variables (ie, between all pairwise combina-
tions). In our pbc data frame, we have 4 continuous variables we might be interested in plotting – ageyrs,
bili, chol, and album. We could generate all 10 possible pairwise scatterplots between these 4 continuous
variables as individual graphs, but who has time for that? Instead, we can generate a matrix of scatterplots
using the pairs() function. The primary argument of the pairs() function is a data frame with numeric
columns – logical and factor columns are converted to numeric ones. The ij th scatterplot of the matrix of
scatterplots contains the ith column of the data frame plotted against the j th. For example,

> pairs(subset(pbc, select = c(ageyrs, bili, chol, album)))
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We used the subset() function to select only those variables we were interested in plotting (select=).

Now let’s look at the relationship between bili and album a bit more closely. The default method of
the generic plot() function generates a simple x-y scatterplot. With the plot() function, the x and y
coordinates of the points to be plotted can be specified in one of two ways: (1) plot(x, y); or (2) plot(y
~ x) (i.e., using a formula interface).

> with(pbc, plot(album ~ bili, xlab = label(bili), ylab = label(album),

+ main = paste("Plot of", label(album), "vs.", label(bili))))
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Notice that pch = 1 (open circle) is the default value of the pch= argument in the plot() function.

We can add more information to the simple x-y scatterplot by incorporating the Hmisc package’s plsmo()
(plot smoother) function. The plsmo() function generates a (non-parametric) plot smoothed estimate (line)
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of x vs. y. Because the plsmo() function is a high-level plotting function, we will need to specify add =
TRUE to add the curve to the x-y scatterplot, as we did with the stripchart() function.

> with(pbc, {

+ plot(album ~ bili, xlab = label(bili), ylab = label(album),

+ main = paste("Plot of", label(album), "vs.", label(bili)))

+ plsmo(x = bili, y = album, add = TRUE)

+ })
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Let’s now switch to graphically displaying some categorical variables. A barplot or dotplot is often used
to graphically display a categorical variable, which can be generated using the barplot() and dotchart()
functions, respectively. Barplots and dotplots are often generated from count data (i.e., a frequency table).
As we have seen, the easiest way to calculate this count data from a raw categorical variable is to use the
table() function, which returns raw frequencies. For example,

> with(pbc, table(censored))

censored
Censored Dead

68 32

If proportions are desired, the prop.table() function can be used to express the table entries as relative
frequencies.

> with(pbc, prop.table(table(censored)))

censored
Censored Dead

0.68 0.32

With this in mind, let’s generate a barplot of censored based on proportions. By default, the barplot()
function will label the bars appropriately if based on either a factor variable or a character variable. However,
the names.arg= argument can be used to explicitly label the bars.

> with(pbc, barplot(prop.table(table(censored)), ylim = c(0, 1), xlab = label(censored),

+ ylab = "Proportion", main = paste("Barplot of", label(censored))))
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We can generate a dotplot in a similar fashion. While the barplot() function displays bars aligned with the
y-axis, the dotchart() function displays dots aligned with the x-axis. Because of this, xlim= is specified in
the dotchart() function invocation instead of ylim=.

> with(pbc, dotchart(prop.table(table(censored)), lcolor = "black",

+ xlim = c(0, 1), xlab = "Proportion", main = paste("Dotplot of",

+ label(censored))))
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Dotplot of Collapsed Survival Status
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By default, the horizontal dotted grid lines are plotted in gray (lcolor = "gray"), but because most copy
machines don’t copy gray well, I specified that they should be plotted in black – lcolor = "black".

We can also easily extend both a barplot and a dotplot to graphically display the cross-tabulation of two
categorical variables. To do this, we merely add a second variable to the table() function invocation. We
can also specify the margin= argument of the prop.table() function in order to calculate the row (margin
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= 1) or column (margin = 2) proportions. For our example, we are interested in column proportions – we
want to graphically depict the proportion of Censored/Dead within each treatment group.

> with(pbc, prop.table(table(censored, drug), margin = 2))

drug
censored D-penicillamine Placebo
Censored 0.6000000 0.6571429
Dead 0.4000000 0.3428571

We also use the barplot() function’s legend.text= argument to add a legend that denotes which bar
represents the Censored and Dead groups of subjects.

> with(pbc, barplot(prop.table(table(censored, drug), margin = 2),

+ beside = TRUE, legend.text = levels(censored), ylim = c(0, 1),

+ xlab = label(censored), ylab = "Proportion", main = paste("Barplot of",

+ label(censored), "\n across", label(drug))))
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Now let’s graphically display the cross-tabulation of the two categorical variables using a dotplot:

> with(pbc, dotchart(prop.table(table(censored, drug), margin = 2),

+ lcolor = "black", xlim = c(0, 1), xlab = "Proportion", main = paste("Dotplot of",

+ label(censored), "\n across", label(drug))))
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As before, I specified lcolor = "black" instead of the default lcolor = "gray" for copying reasons.

As an alternative to the previous dotplot that displays the proportions of censored, and dead subjects in
each drug group as two separates groups of lines, let’s work through how to display the corresponding subject
proportions from the two groups on the same line using two different point characters. To do this, we subset
the prop.table() function output using single square bracket operators, [ ] – specifically, we desire the
proportion of Dead and Censored (ie, the row proportions) in (1) the D-penicillamine column and (2) the
Placebo column. We will learn more about subsetting output in the second document. Unlike in the previous
examples where we used add = TRUE, we will use the par() function’s new= argument to superimpose the
second dotplot onto the first because the dotchart() function does not accept an add= argument. Lastly,
we will use the legend() function to add a legend to the plot to denote the point characters of each group.

> with(pbc, dotchart(prop.table(table(censored, drug), margin = 2)[,

+ "D-penicillamine"], lcolor = "black", xlim = c(0, 1), xlab = "Proportion",

+ main = paste("Dotplot of", label(censored), "\n across", label(drug))))

> par(new = TRUE)

> with(pbc, dotchart(prop.table(table(censored, drug), margin = 2)[,

+ "Placebo"], lcolor = "black", xlim = c(0, 1), pch = 4))

> legend(x = 1, y = 0.25, xjust = 1, yjust = 0, legend = levels(pbc$drug),

+ pch = c(1, 4))
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When you invoke the par() function, it is always a good idea to invoke it once again after you have generated
your graph to reset any modified arguments to their default values.

> par(new = FALSE)

Lastly, let’s discuss two ways you can graphically display the relationship between two continuous variables
and a categorical one. The first suggested way uses different point characters and line types to distinguish
the continuous data values in each level of the categorical variable. We first use the plot() function to set
up the x- and y-axes, but we don’t plot any points (type = "n" – i.e., ‘null’). We then use the points()
function to add points to the blank plot. Specifically, we add the points for each level of the categorical
variable by using the subset() function to appropriately subset the rows of our pbc data frame. The groups
of points are distinguished by point character (pch=) and line type (lty=). We add the plot smoothed line
of x vs. y using the plsmo() function, by specifying the group= argument to generate a separate smoothed
line for each level of the categorical variable. And lastly, we use the legend() function to add a legend to
the plot to denote the point characters and line types.

> with(pbc, plot(album ~ chol, type = "n", xlab = label(chol), ylab = label(album),

+ main = paste("Plot of", label(album), "vs. \n", label(chol),

+ "across", label(drug))))

> with(subset(pbc, drug == "D-penicillamine"), points(album ~ chol,

+ pch = 4))

> with(subset(pbc, drug == "Placebo"), points(album ~ chol))

> with(pbc, {

+ plsmo(chol, album, group = drug, add = TRUE, lty = c(1, 2))

+ legend(x = 1100, y = 2, xjust = 1, yjust = 0, legend = levels(drug),

+ lty = c(1, 2), pch = c(4, 1))

+ })

64



CHAPTER 4. R GRAPHICS

200 400 600 800 1000

2.
0

2.
5

3.
0

3.
5

4.
0

Plot of Serum Albumin vs. 
 Serum Cholesterol across Treatment

Serum Cholesterol

S
er

um
 A

lb
um

in

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

D−penicillamine
Placebo

The second suggested way to graphically display the relationship between two continuous variables and a
categorical one involves generating multiple side-by-side scatterplots – a scatterplot for each level of the
categorical variable and one that does not distinguish the categorical variable (i.e., an ‘overall’ plot). To
generate multiple plots (i.e., figures) on the same page, we use the par() function to specify the number of
figures to place on one page using the mfrow= argument – mfrow = c(nr, nc), where nr is the number of
rows and nc is the number of columns. By default, mfrow = c(1, 1) – there is one figure per page. When
changed from default, the number of figures on one page will be nr*nc. The figures will be drawn by rows –
that is, across the columns (from left to right) in each subsequent row.

For our pbc data frame, we will want to generate three figures on one page – one for "D-penicillamine",
one for "Placebo", and one ‘overall’ plot that does not distinguish drug. So, we will specify par(mfrow =
c(1, 3)) – one row and three columns. We then generate three separate figures using the subset(), plot()
and plsmo() functions. We’ll ensure that the limits of the x- and y-axes in each plot are consistent using
the xlim= and ylim= arguments – setting them equal to the ‘overall ’ ranges of chol and album. To add a
title across all three plots, we use the par() function’s oma= argument to specify the desired size of the outer
margins (specified in order: bottom, left, top, right). We then use the mtext() (margin text) function to
add the desired title to the top (side = 3) outer (outer = TRUE) margin.

> xrange <- with(pbc, range(chol, na.rm = TRUE))

> yrange <- with(pbc, range(album, na.rm = TRUE))

> par(mfrow = c(1, 3), oma = c(0, 0, 5, 0))

> with(subset(pbc, drug == "D-penicillamine"), {

+ plot(album ~ chol, pch = 16, xlim = xrange, ylim = yrange, xlab = label(chol),

+ ylab = label(album), main = levels(drug)[1])

+ plsmo(chol, album, add = TRUE)

+ })

> with(subset(pbc, drug == "Placebo"), {

+ plot(album ~ chol, pch = 16, xlim = xrange, ylim = yrange, xlab = label(chol),

+ ylab = label(album), main = levels(drug)[2])

+ plsmo(chol, album, add = TRUE)

+ })

> with(pbc, {

+ plot(album ~ chol, pch = 16, xlim = xrange, ylim = yrange, xlab = label(chol),

+ ylab = label(album), main = "Overall")
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+ plsmo(chol, album, add = TRUE)

+ mtext(text = paste("Plot of", label(album), "vs. \n", label(chol),

+ "across", label(drug)), side = 3, outer = TRUE)

+ })
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Plot of Serum Albumin vs. 
 Serum Cholesterol across Treatment

Notice, we used the range() function to calculate and return the minimum and maximum values need for
the xlim= and ylim= arguments – this is useful in case our data changes. The [ ] (square brackets) that
we used in the levels(drugs) expressions to specify the main= argument are the operators used to subset
vectors. We’ll discuss this more in the next document. Also, in the past, when there was only one plot per
page, we saw that a high-level plotting function starts a new plot on a new page. In this case, when there
are multiple plots on a page, a high-level plotting function starts the next plot on the same page. A new
page is started only when the number of plots per page is exceeded.

As we did previously, let’s reset the modified par() functions arguments to their default values.

> par(mfrow = c(1, 1), oma = c(0, 0, 0, 0))

→ Practice Exercise: Let’s generate: (1) A dotplot of the ascites genotypes across the sex genotypes,
where the corresponding proportions are shown on the same line with different point characters (with a
legend); and (2) a replicate plot of album versus chol across drug using the three separate graphs (one for
each level of drug and one ‘overall’). However, this time for (2), in the first two graphs, display all data
points as a background layer of gray filled circles.

GRAPHICAL OUTPUT: As you have seen, when using R interactively, the main persistent record of
graphical output is a window on your screen, which is also known as a GUI (‘graphical user interface’) screen
device. When R is installed, an appropriate screen format is selected as the default GUI screen device and
this default device is opened automatically the first time that any graphical output occurs. For example, on
the various Unix systems, the default GUI screen device is an X11 window. These GUI screen devices are
opened by internally calling the x11(), windows(), and quartz() functions in the Linux/Unix, Windows,
and Mac versions of R, respectively. By default, the size of an X11 graphics window and a Windows graphics
window are 7 inches by 7 inches. A Mac graphics window is, by default, 5 inches by 5 inches. The three
mentioned functions all have height= and width= with arguments that can be used to open new GUI screen
devices of the desired size.
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In the Windows version of R, right-clicking on the graphics window offers you three options for outputting
any desired graph from R: (1) Copy your graph as either a metafile or a bitmap; (2) Save your graph as
either a metafile or postscript; and/or (3) Print your graph. For the Copy and Save options, it is very easy
to then Paste or Insert, respectively, your graph into a Microsoft Word and/or Powerpoint document.

In any version of R, it is also possible to produce a file that contains your plot. Similar to the GUI screen
devices, the graphical output can be directed to a particular file device, which dictates the output format
that will be produced. And like the GUI screen devices, the file devices are controlled by specific functions,
including the pdf() function that produces an Adobe PDF file. Like the GUI screen device functions, these
file device functions allow you to specify things such as the name of the file and the size of the plot. Unlike
sending graphical output to a window on your screen, directing graphical output to a file takes a few more
steps. A file device must be created or ‘opened to writing’ in order to receive graphical output by invoking
the desired file device function with at least the desired file name specified. Once you have opened the file to
writing, you then execute all of your desired graphical function invocations. In turn, the specific file device
that you opened converts the graphical function invocations from R (e.g., ‘draw a line’) into commands
that the particular device can understand and your graphical output is generated. When you have finished
writing the desired graphical output to a file, you then close the file to writing (and therefore close the file
device) by invoking the dev.off() (‘device off’) function. For example, let’s write a simple scatterplot to a
PDF file named myplot.pdf:

> pdf("myplot.pdf", height = 8.5, width = 11)
> with(pbc, plot(ageyrs ~ chol,
+ main = "Age (years) vs. Serum Chol",
+ xlab = label(chol), ylab = label(ageyrs)))
> dev.off()

In the previous code, we also specified that the plot should be in a landscape orientation (i.e., height <
width), with a height of 8.5” and a width of 11.0”.

A THOUGHT TO END WITH: Keep in mind that there are always multiple ways of performing the
same task in R. And remember to read, read, read – read the documentation, including help files and their
examples; read others’ code; and read the body of defined functions. Also, feel free to check out the website for
the weekly ‘R Clinic’ that I run at Vanderbilt University – http://biostat.mc.vanderbilt.edu/RClinic.
It contains the ‘solutions’ to problems that various ‘R Clinic’ attendees have posed.
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