PA196: Pattern Recognition

3. Linear discriminants

Vlad Popovici

popovici@iba.muni.cz

Institute of Biostatistics and Analyses Masaryk University, Brno

Introduction

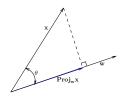
General problem Margins Generalizations

- 2 Linearly separable binary problems General approach The perceptron
- 3 Fisher discriminant analysis
- 4 Linear regression
 Minimum squared-error procedures
 The Widow-Hoff procedure
 Ho-Kashyap procedures

Reminder - scalar product

- scalar (dot, inner) product of two vectors: $\mathbf{x}, \mathbf{w} \in \mathbb{R}^d : \mathbf{w} \cdot \mathbf{x} = \langle \mathbf{w}, \mathbf{x} \rangle = \mathbf{w}^t \mathbf{x} = \sum_{i=1}^d w_i x_i \in \mathbb{R}$
- $\cos \theta = \frac{\langle \mathbf{w}, \mathbf{x} \rangle}{\|\mathbf{w}\| \|\mathbf{x}\|}$
- $\langle \mathbf{w}, \mathbf{x} \rangle = 0 \iff \mathbf{w} \perp \mathbf{x}$
- projection of **x** on **w** is

$$\operatorname{Proj}_{\mathbf{w}} \mathbf{x} = \frac{\langle \mathbf{x}, \mathbf{w} \rangle}{\|\mathbf{w}\|} \frac{\mathbf{w}}{\|\mathbf{w}\|} = \frac{\langle \mathbf{x}, \mathbf{w} \rangle}{\|\mathbf{w}\|^2} \mathbf{w}$$



- 1) Introduction
 General problem
 Margins
 Generalizations
- 2 Linearly separable binary problems General approach The perceptron
- 3 Fisher discriminant analysis
- 4 Linear regression Minimum squared-error procedures The Widow-Hoff procedure Ho-Kashyap procedures

General problem

- we consider the binary classification problem (K = 2)
- without loss of generality, we let the labels of the classes be ± 1
- we are given a set $X \times \mathcal{Y} = \{(\mathbf{x}_i, y_i) | i = 1, ..., n\} \subset \mathbb{R}^d \times \{-1, +1\}$
- the goal is to find the parameters of the classifier such that the number of misclassified points is minimized
- let the discriminant function have the form

$$h(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0 = \langle \mathbf{w}, \mathbf{x} \rangle + w_0 = w_0 + \sum_{i=1}^d w_i x_i$$

- note that ${\bf x}$ can be replaced with $\phi({\bf x})!$ (we'll discuss this later)
- the classifier is

$$sign(h(\mathbf{x})) = sign(\langle \mathbf{w}, \mathbf{x} \rangle + w_0)$$

- an error: if $sign(\langle \mathbf{w}, \mathbf{x}_i \rangle + w_0) \neq y_i$; in other words: if $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + w_0) < 0 \Leftrightarrow y_i h(\mathbf{x}_i) < 0$
- the risk of misclassification (error) is

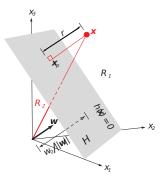
$$R(h) = \Pr[Y \neq \operatorname{sign}(h(X))]$$

where (X, Y) is a random pair of observations

 the empirical risk is the estimation of the risk on a given set of points:

$$\hat{R}_{n}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{y_{i} \neq \text{sign}(h(\mathbf{x}_{i}))\}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{y_{i}h(\mathbf{x}_{i}) < 0}$$

• you need $n \ge d + 1$ points for learning the classifier



The linear decision boundary H, where $h(\mathbf{x}) = \mathbf{w}^t\mathbf{x} + w_0 = 0$, separates the feature space into two half-spaces R_1 (where $h(\mathbf{x}) > 0$) and R_2 (where $h(\mathbf{x}) < 0$). From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright c 2001 by John Wiley & Sons, Inc.

1 Introduction
General problem
Margins
Generalizations

- 2 Linearly separable binary problems General approach The perceptron
- 3 Fisher discriminant analysis
- 4 Linear regression
 Minimum squared-error procedures
 The Widow-Hoff procedure
 Ho-Kashyap procedures

Margins

Functional Margin

The functional margin of a point \mathbf{x}_i with respect to a hyperplane \mathbf{w} is defined to be

$$\gamma_i = y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + w_0) = y_i h(\mathbf{x}_i)$$

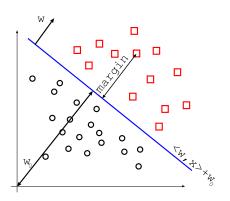
Geometric Margin

The *geometric margin* of a point \mathbf{x}_i with respect to a hyperplane \mathbf{w} is defined to be

$$\gamma_i = y_i \left(\left\langle \frac{\mathbf{w}}{\|\mathbf{w}\|}, \mathbf{x}_i \right\rangle + \frac{w_0}{\|\mathbf{w}\|} \right) = y_i \frac{h(\mathbf{x}_i)}{\|\mathbf{w}\|}$$

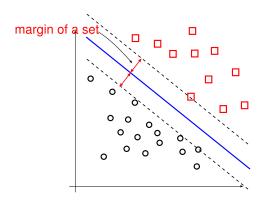
→ Geometric margin is the normalized functional margin.

Margin of a point



Margin of a set (of points)

The maximum margin among all (hyper)planes is the margin of a set of points. The corresponding hyperplane is called maximum margin hyperplane.

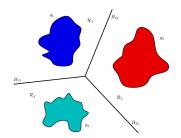


Introduction
 General problem
 Margins
 Generalizations

- 2 Linearly separable binary problems General approach The perceptron
- 3 Fisher discriminant analysis
- 4 Linear regression Minimum squared-error procedures The Widow-Hoff procedure Ho-Kashyap procedures

Generalization to multi-class problems

- a multi-class problem can be decomposed in a series of two-class problems: 1-vs-all or 1-vs-1
- or, one can use K (no. of classes) discriminant fn. h_i(x) and build classifiers of the form: assign x to class i if h_i(x) > h_i(x) for all i ≠ j
- this defines K(K-1)/2hyperplanes $H_{ii}: h_i(\mathbf{x}) - h_i(\mathbf{x}) = 0$
- in practice, there are usually less hyperplanes that form the decision surface



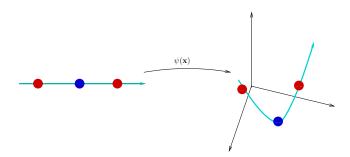
Generalized linear discriminants

Consider a function $\psi: \mathbb{R}^d \to \mathbb{R}^{\hat{d}}$. The discriminant function

$$g(\mathbf{x}) = \langle \mathbf{a}, \psi(\mathbf{x})
angle = \sum_{i=1}^{\hat{G}} a_i \psi_i(\mathbf{x})$$

is a linear function in \mathbf{a} (but not in \mathbf{x}).

Example: let $\mathbf{x} = x \in \mathbb{R}$ and let $\psi(x) = [1, x, x^2]^t \in \mathbb{R}^3$.



Remarks:

- a problem which is not linearly separable in \mathbb{R}^d may become linearly separable in $\mathbb{R}^{\hat{a}}$
- ψ =?
- finding the coefficients in $\mathbb{R}^{\hat{a}}$ requires much more training points!
- the decision surface, when projected back into \mathbb{R}^d (by ψ^{-1}) is non-linear

- a convenient (but trivial) transformation:
 "normalization" of the notation
- take $\psi(\mathbf{x}) = y[1, \mathbf{x}]^t$. This allows us to write

$$\gamma = yh(\mathbf{x}) = y(\langle \mathbf{w}, \mathbf{x} \rangle + w_0) = \langle \mathbf{q}, \mathbf{z} \rangle$$

where $\mathbf{a} = [w_0, \mathbf{w}]^t$ and $\mathbf{z} = y[1, \mathbf{x}]^t$

the problem becomes: find a such that

$$\langle \mathbf{a}, \mathbf{z} \rangle > 0$$

i.e. all the margins are positive

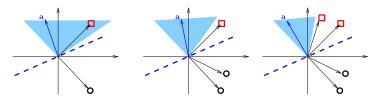
• the decision surface \hat{H} in \mathbb{R}^{d+1} , defined by $\langle \mathbf{a}, \mathbf{z} \rangle = 0$, corresponds to a hyperplane passing through the origin of the **z**-space

- Introduction
 General problem
 Margins
 Generalizations
- 2 Linearly separable binary problems General approach The perceptron
- 3 Fisher discriminant analysis
- 4 Linear regression
 Minimum squared-error procedures
 The Widow-Hoff procedure
 Ho-Kashyap procedures

- consider we are given the set $\{(\mathbf{x}_i, y_i)\}$ with $y_i = \pm 1$
- with the previous "normalized" notation, the set is linearly separable if

$$\langle \mathbf{a}, \mathbf{z}_i \rangle > 0, \quad \forall i = 1, \dots, n$$

• the solution \mathbf{a} is constrained by each point \mathbf{z}_i



- under current conditions, the solution is not unique!
- solutions on the boundary of the solution space may be too sensitive → you can use the condition ⟨a, z_i⟩ ≥ ξ > 0

- Introduction
 General problem
 Margins
 Generalizations
- 2 Linearly separable binary problems General approach The perceptron
- 3 Fisher discriminant analysis
- 4 Linear regression
 Minimum squared-error procedures
 The Widow-Hoff procedure
 Ho-Kashyap procedures

General approach

- let $J(\mathbf{a})$ be a criterion function that measures the "suitability" of a candidate solution \mathbf{a}
- by convention, the solution to the classification problem is obtained as

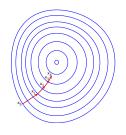
$$\mathbf{a}^* = \arg\min_{\mathbf{a}} J(\mathbf{a})$$

 usually, J is chosen to be continuous (at least in a neighborhood of the solution) and differentiable

Gradient descent

$$\mathbf{a}_{k+1} = \mathbf{a}_k - \eta_k \nabla J(\mathbf{a}_k)$$

- the negative gradient, ¬∇J(a) is locally the steepest descent towards a (local) minimum
- η_k is a line search parameter or learning rate
- start with some \mathbf{a}_0 and iterate until $|\eta_k \nabla J(\mathbf{a}_k)| < \theta$



Using Taylor's 2nd order approximation:

$$J(\mathbf{a}) \approx J(\mathbf{a}_k) + \nabla J(\mathbf{a} - \mathbf{a}_k) + \frac{1}{2}(\mathbf{a} - \mathbf{a}_k)^t \mathbf{H}(\mathbf{a} - \mathbf{a}_k),$$

where **H** is the *Hessian matrix* $\mathbf{H} = \left[\frac{\partial^2 J}{\partial a_i \partial a_j}\right]_{ij}$, one can find the optimal learning rate as

$$\eta_k = \frac{||\nabla J||^2}{(\nabla J)^t \mathbf{H}(\nabla J)}.$$

Note: if J is quadratic, then η_k is a constant.

Newton's method

$$\mathbf{a}_{k+1} = \mathbf{a}_k - \mathbf{H}^{-1}(\nabla J)$$

- works well for quadratic objective functions
- problems if the Hessian is singular
- no need to invert **H**: solve the system $\mathbf{H}\mathbf{s} = -\nabla J$ and update the solution $\mathbf{a}_{k+1} = \mathbf{a}_k + \mathbf{s}$

- 1 Introduction
 General problem
 Margins
 Generalizations
- 2 Linearly separable binary problems General approach The perceptron
- 3 Fisher discriminant analysis
- 4 Linear regression Minimum squared-error procedures The Widow-Hoff procedure Ho-Kashyap procedures

The perceptron

• criterion: find \mathbf{a}^* (or, equivalently, \mathbf{w}^* and w_0^*) that minimize

$$J(\mathbf{a}) = -\sum_{i \in \mathbb{I}} \gamma_i = -\sum_{i \in \mathbb{I}} \langle \mathbf{a}, \mathbf{z}_i
angle$$

where I is the set of indices of misclassified points

- note: since $\gamma_i < 0$ for all misclassified points, $J(\mathbf{a}) \ge 0$, reaching 0 when all points are correctly classified
- it is easy to see that

$$abla_{f a} J({f a}) = -\sum_{i \in {\mathbb T}} {f z}_i$$

 using gradient descent we get the updating iterations of the form

$$\mathbf{a}_{k+1} = \mathbf{a}_k + \eta_k \mathbf{z}_i$$

- the perceptron in guaranteed to converge in a finite number of iterations, if the training set is separable -Novikoff's thm
- from Novikoff's thm. the number of mistakes the perceptron makes is upper bounded by

$$\left(\frac{2R}{\gamma}\right)^2$$

where R is the radius of the sphere containing the data points, i.e. $R = \max_i ||\mathbf{x}_i||$

Perceptron algorithm (batch perceptron)

Input: A separable training set X × Y and a stop criterion θ
Output: a_k such that γ_i > 0, ∀i and k is the number of mistakes
1: a₀ ← 0, k ← 0, η₀ ← some initial value
2: repeat
3: for i = 1 to n do
4: if γ_i = ⟨a_k, z_i⟩ < 0 then

- 4: If $\gamma_i = \langle \mathbf{G}_k, \mathbf{z}_i \rangle < 0$ then 5: $\mathbf{G}_{k+1} \leftarrow \mathbf{G}_k + \eta_k \mathbf{z}_i$ 6: $k \leftarrow k+1$ 7: end if
- 8: **end for** 9: **until** $|\eta_k \sum_{i \in \mathbb{T}_k} \mathbf{z}_i| < \theta$

What about η_k ? There are different "schedules" for modifying it...

• conditions: $\eta_k \ge 0$, $\lim_{m \to \infty} \sum_{k=1}^m \eta_k = \infty$ and

$$\lim_{m \to \infty} \frac{\sum_{k=1}^{m} \eta_k^2}{\left(\sum_{k=1}^{m} \eta_k\right)^2} = 0$$

- $\eta_k = \text{constant} > 0$
- $\eta_k \propto \frac{1}{k}$

- let a be the solution of the perceptron algorithm
- it is easy to see that $\mathbf{a} = \sum_{i=1}^{n} \alpha_i \mathbf{z}_i$ where

$$\alpha_i = \begin{cases} 0, & \text{if point } i \text{ was always correctly classified} \\ > 0, & \text{was misclassified} \end{cases}$$

- α_i can be seen as the importance (or contribution) of \mathbf{z}_i to the classification rule
- the discriminant function can be rewritten as

$$h(\mathbf{x}) = \langle \mathbf{a}, \mathbf{z} \rangle$$

$$= \left\langle \sum_{i=1}^{n} \alpha_i \mathbf{z}_i, \mathbf{z} \right\rangle$$

$$= \sum_{i=1}^{n} \alpha_i \langle \mathbf{z}_i, \mathbf{z} \rangle$$

• this is the dual form of the perceptron algorithm

Dual formulation of the perceptron algorithm

```
Input: A training set \mathcal{X} \times \mathcal{Y}
Output: \alpha = [\alpha_1, \dots, \alpha_n]
1: \alpha \leftarrow \mathbf{0}
2: repeat
3: for i = 1 to n do
4: if \gamma_i = \left(\sum_{j=1}^n \alpha_j \langle \mathbf{z}_j, \mathbf{z}_i \rangle\right) \leq 0 then
5: \alpha_i \leftarrow \alpha_i + 1
6: end if
7: end for
8: until no mistakes
```

Dual representation - remarks

- in dual representation, the only way data is involved in the algorithm/formula is through the dot products $\langle \mathbf{z}_i, \mathbf{z}_j \rangle$
- this property is valid for a large class of methods
- the dot products for the data can be computed offline, and stored in a Gram matrix G = [(z_i, z_i)]_{jj}
- similarly, to predict the class of a new point x, just (some of) the products (z, z_i) are needed

Relaxation procedures

Another objective function:

$$J_{r}(\mathbf{a}) = rac{1}{2} \sum_{i \in \mathbb{I}} rac{\left(\langle \mathbf{a}, \mathbf{z}_i
angle - \xi
ight)^2}{\|\mathbf{z}_i\|^2}$$

- it is smooth and has a continuous gradient function
- the term ξ is introduced to avoid the solution on the boundary of the solution space
- $||\mathbf{z}||^2$ is a normalization term to avoid J_r being dominated by the largest vectors
- 1/2 is merely to make the gradient nicer...

$$abla J_r = \sum_{i \in \mathbb{I}} \frac{\langle \mathbf{c}, \mathbf{z}_i \rangle - \xi}{\|\mathbf{z}_i\|^2} \mathbf{z}_i$$

Algorithms:

batch relaxation with margin: update step:

$$\mathbf{a}_{k+1} = \mathbf{a}_k + \eta_k \sum_{i \in \mathbb{I}_k} \frac{\xi - \langle \mathbf{a}_k, \mathbf{z}_i \rangle}{\|\mathbf{z}_i\|^2} \mathbf{z}_i$$

 single-sample relaxation with margin: update step (for each misclassified sample z_i):

$$\mathbf{a}_{k+1} = \mathbf{a}_k + \eta_k \frac{\xi - \langle \mathbf{a}_k, \mathbf{z}_i \rangle}{\|\mathbf{z}_i\|^2} \mathbf{z}_i$$

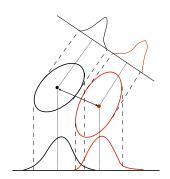
• if $\eta_k < 1$: underrelaxation; if $\eta_k > 1$: overrelaxation

- Introduction
 General problem
 Margins
 Generalizations
- 2 Linearly separable binary problems General approach The perceptron
- 3 Fisher discriminant analysis
- 4 Linear regression
 Minimum squared-error procedures
 The Widow-Hoff procedure
 Ho-Kashyap procedures

Fisher criterion

Objective

Find the hyperplane (\mathbf{w}, w_0) on which the projected data is maximally separated.



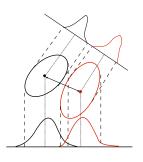
- the lenght of the projection of a vector z onto w is \(\frac{\wdot{w} \, z}{\pi |w|} \)
- projection of the difference vector between the means of the two classes (taking ||w|| = 1):

$$|\langle \mathbf{w}, (\mu_{+1} - \mu_{-1}) \rangle|$$

 maximize the difference, relative to the projected pool variance (scatter):

$$\frac{1}{n_{+1}+n_{-1}}(s_{+1}^2+s_{-1}^2)$$

• $s^2 = \sum_i (\langle \mathbf{w}, \mathbf{x}_i \rangle - \langle \mathbf{w}, \mu. \rangle)^2$ where the sum is over the elements in either class



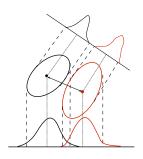
- the lenght of the projection of a vector z onto w is \(\frac{\w,z}{\pi_{|w|}} \)
- projection of the difference vector between the means of the two classes (taking ||w|| = 1):

$$|\langle \mathbf{w}, (\mu_{+1} - \mu_{-1}) \rangle|$$

 maximize the difference, relative to the projected pool variance (scatter):

$$\frac{1}{n_{+1}+n_{-1}}(s_{+1}^2+s_{-1}^2)$$

• $s^2 = \sum_i (\langle \mathbf{w}, \mathbf{x}_i \rangle - \langle \mathbf{w}, \mu. \rangle)^2$ where the sum is over the elements in either class



Objective: maximize

$$J(\mathbf{w}) = \frac{|\langle \mathbf{w}, \mu_{+1} \rangle - \langle \mathbf{w}, \mu_{-1} \rangle|^2}{s_{+1}^2 + s_{-1}^2}$$

Fisher criterion

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} J(\mathbf{w}) = \arg\max_{\mathbf{w}} \frac{\mathbf{w}^T \mathbf{S}_D \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

where

- $\mathbf{S}_b = (\mu_{+1} \mu_{-1})(\mu_{+1} \mu_{-1})^t \leftarrow between-class scatter matrix$
- $\mathbf{S}_{w} = \sum_{i \in I_{+1}} (\mathbf{x}_{i} \mu_{+1}) (\mathbf{x}_{i} \mu_{+1})^{t} + \sum_{i \in I_{-1}} (\mathbf{x}_{i} \mu_{-1}) (\mathbf{x}_{i} \mu_{-1})^{t}$ \leftarrow within-class scatter matrix
- \$_w is proportional to sample covariance matrix for the pooled data

- J_w is also known as Rayleigh quotient
- the solution has the form

$$\mathbf{w}^* \propto \mathbf{S}_w^{-1} (\mu_{+1} - \mu_{-1})$$

and it defines the direction of Fisher's linear discriminant

 the classification of d-dimensional points is transformed into a classification of one-dimensional points

- no assumption on the underlying distributions was made in finding w*
- the complete form of the linear discriminant is

$$\langle \mathbf{w}, \mathbf{x} \rangle + w_0 = 0$$

- to find w_0 one can, for example:
 - assume $p(\mathbf{x}|\pm 1)$ to be Gaussians: this leads to the previously seen formulas for w_0 (see Ch. 2)
 - try to find a value optimal for the training set



- Introduction
 General problem
 Margins
 Generalizations
- 2 Linearly separable binary problems General approach The perceptron
- 3 Fisher discriminant analysis
- 4 Linear regression

Minimum squared-error procedures The Widow-Hoff procedure Ho-Kashyap procedures

- Introduction
 General problem
 Margins
 Generalizations
- 2 Linearly separable binary problems General approach The perceptron
- 3 Fisher discriminant analysis
- 4 Linear regression
 Minimum squared-error procedures
 The Widow-Hoff procedure
 Ho-Kashyap procedures

Linear regression problem

Find $\mathbf{a} = ([w_0, \mathbf{w}]^t)$ such that

$$b_i = \langle \mathbf{a}, \mathbf{z}_i \rangle, \quad i = 1, 2, \dots, n$$

for some fixed positive constants b_i . In matrix notation, solve the linear system

$$\mathbf{Za} = \mathbf{b}$$

for a.

- **Z** is a $n \times (d+1)$ -dimensional matrix (*design matrix*), **a** is a (d+1)-elements vector.
- **b** is a *n*-elements vector (*response vector*)
- usually n > d + 1, so the system is overdetermined → no exact solution

define the error vector

$$\mathbf{e} = \mathbf{Z}\mathbf{a} - \mathbf{b}$$

minimum squared error criterion:

minimize
$$J_s(\mathbf{a}) = \|\mathbf{e}\|^2 = \sum_{i=1}^n (\langle \mathbf{a}, \mathbf{z}_i \rangle - b_i)^2$$

- at the minimum, the gradient $\nabla J_s = 2\mathbf{Z}^t(\mathbf{Z}\mathbf{a} \mathbf{b})$ is zero $\Rightarrow \mathbf{a} = (\mathbf{Z}^t\mathbf{Z})^{-1}\mathbf{Z}^t\mathbf{b} = \mathbf{Z}^\dagger\mathbf{b}$, where \mathbf{Z}^\dagger is the *pseudoinverse* of \mathbf{Z}
- the solution depends on **b** and different choices lead to various properties of the solution

Relation to Fisher's linear discriminant

- by properly choosing the class coding, one can show that MSE approach is equivalent to FDA
- $b_i = \frac{n}{n_{+1}}$ for the class "+1" (with n_{+1} elements) and $b_j = \frac{n}{n_{-1}}$ for the class "-1" (with n_{-1} elements)
- the MSE criterion for $\mathbf{a} = [w_0, \mathbf{w}]$ leads to

$$\mathbf{w} \propto nS_{w}^{-1}(\mu_{+1} - \mu_{-1})$$

which is the direction of FDA

- additionally, it gives a value for the threshold: $w_0 = -\mu^t \mathbf{w}$ (μ is the grand mean vector)
- the decision rule becomes: if $\mathbf{w}^{\dagger}(\mathbf{x} \mu) > 0$ classify \mathbf{x} as belonging to the first class

Relation with Bayesian classifier

let the Bayesian discriminant be

$$h_0(\mathbf{x}) = P(g_1|\mathbf{x}) - P(g_2|\mathbf{x})$$

 the samples are assumed to be drawn independently and identically distributed from the underlying distribution

$$p(\mathbf{x}) = p(\mathbf{x}|g_1)P(g_1) + p(\mathbf{x}|g_2)P(g_2)$$

MSE becomes

$$\epsilon^2 = \int (\langle \mathbf{a}, \mathbf{z} \rangle - h_0(\mathbf{x}))^2 p(\mathbf{x}) d\mathbf{x}$$

- → the solution to MSE problem, a, generates an approximation of the Bayesian discriminant
- p(x) = ?
- main problem of MSE: places more emphasis on points with high $p(\mathbf{x})$ instead of point near to the discrimination surface
- → the "best" approximation of Bayes decision does not necessarily minimize the probability of error

Numerical considerations on the LS problem

Using the pseudo-inverse is not the best technique, from a numerical stability perspective:

- computing Z[†]Z and Z[†]b may lead to information loss due to approximations in floating-point computations
- the conditioning of the system is worsen:
 cond(Z[†]Z) = [cond(Z)]²

Normally, a *matrix factorization* is used for improved numerical stability: QR, SVD,...

QR factorization

The $n \times m$ (with m > n) matrix **Z** can be factorized as

$$\mathbf{Z} = \mathbf{Q}\mathbf{R}$$

where

- **Q** is an orthogonal matrix: $\mathbf{Q}^{t}\mathbf{Q} = \mathbf{I} \Leftrightarrow \mathbf{Q}^{-1} = \mathbf{Q}^{t}$
- R is an upper triangular matrix

With this, the solution \mathbf{a} to our problem is the solution of the *triangular system* (solved by backsubstitution):

$$Ra = Q^tb$$

A statistical perspective

A linear model (linear regression) problem:

$$E[\mathbf{b}] = \mathbf{Za}$$
, under the assumption $Cov(b) = \sigma^2 I$

It can be shown that the best linear unbiased estimator is

$$\hat{\mathbf{a}} = (\mathbf{Z}^t\mathbf{Z})^{-1}\mathbf{Z}^t\mathbf{b} = \mathbf{R}^{-1}\mathbf{Q}^t\mathbf{b}$$

for a decomposition $\mathbf{Z} = \mathbf{Q}\mathbf{R}$. Then: $\hat{\mathbf{b}} = \mathbf{Q}\mathbf{Q}^t\mathbf{b}$. (Gauss-Markov thm.: LS estimator has the lowest variance among all unbiased linear estimators.) Also,

$$Var(\hat{\mathbf{a}}) = (\mathbf{Z}^t \mathbf{Z})^{-1} \sigma^2 = (\mathbf{R}^t \mathbf{R})^{-1} \sigma^2$$

where
$$\sigma^2 = \|\mathbf{b} - \hat{\mathbf{b}}\|^2 / (n - d - 1)$$
.

- Introduction
 General problem
 Margins
 Generalizations
- 2 Linearly separable binary problems General approach The perceptron
- 3 Fisher discriminant analysis
- 4 Linear regression
 Minimum squared-error procedures
 The Widow-Hoff procedure
 Ho-Kashyap procedures

- the MSE criterion, $J_s(a) = \sum_{i=1}^n (\langle \mathbf{a}, \mathbf{z}_i \rangle b_i)^2$ can also be minimized by gradient descent method
- since

$$\nabla J_{\mathcal{S}} = 2\mathbf{Z}^{t}(\mathbf{Za} - \mathbf{b})$$

the update rule becomes

$$\mathbf{a}_1 = \text{some value}$$

$$\mathbf{a}_{k+1} = \mathbf{a}_k + \eta_k \mathbf{Z}^t (\mathbf{Z} \mathbf{a}_k - \mathbf{b})$$

 if η_k = η₁/k, the procedure convergest to a limiting value for a satistifying

$$\mathbf{Z}^{t}(\mathbf{Z}\mathbf{a}-\mathbf{b})=0$$

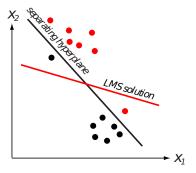
 this algorithm yields a solution even if Z[†]Z is singular or badly conditioned The Widrow-Hoff (or LMS) algorithm implements sequential gradient descent. (In signal processing: least mean squares filter - adaptive filtering...)

Input: A training set (X, y)

Output: a - approximate MSE solution

- 1: initialize $\mathbf{a}, \mathbf{b}, \eta_1, \theta$ and $k \leftarrow 0$
- 2: repeat
- 3: $k \leftarrow (k+1)n$
- 4: $\mathbf{a} \leftarrow \mathbf{a} + \eta_k (b_k \langle \mathbf{a}, \mathbf{z}_k \rangle) \mathbf{z}_k$
- 5: $\eta_k \leftarrow \eta_1/k$
- 6: **until** $|\eta_k(b_k \langle \mathbf{a}, \mathbf{z}_k \rangle)\mathbf{z}_k| < \theta$

(DHS - Fig.5.17)



- Introduction
 General problem
 Margins
 Generalizations
- 2 Linearly separable binary problems General approach The perceptron
- 3 Fisher discriminant analysis
- 4 Linear regression
 Minimum squared-error procedures
 The Widow-Hoff procedure
 Ho-Kashyap procedures

- consider **b** = **Za** be the *margins* (instead of fixed labels)
- idea: adjust both the coefficients a and the margins b such that b > 0 (each margin should be positive)
- formally: find a and b > 0 such that

$$J_s(\mathbf{a}, \mathbf{b}) = ||\mathbf{Z}\mathbf{a} - \mathbf{b}||^2$$

becomes 0

 use a modified gradient descent, with gradient taken w.r.t. a and b