
PA196: Pattern Recognition
08. Multiple classifier systems (cont’d)

Dr. Vlad Popovici
popovici@recetox.muni.cz

RECETOX
Masaryk University, Brno

General idea

X

X1 X2 XT

weighted majority vote:

H =
∑

twtht

subsets of examples

subsets of features

h1 h2
hT

1

n

d

Outline

1 Bagging

2 Random forests

3 AdaBoost
Introduction
Basic AdaBoost
Different views on AdaBoost
An additive logistic regression perspective

Bagging (Breiman, 1996)

• bagging = bootstrap aggregation

• create T bootstrap samples Xt by sampling with replacement

• train a classifier on each Xt

• aggregate the classifications by plurality voting to obtain the
aggregated classifier H

• a similar approach works for regression

• works well with unstable classifiers (with high variance):
decision trees, neural networks

Why does bagging work?

• reduces variance (due to sampling in the test sets):

E[(y − H(x))2] = (y − E[H(x)])2 + E[(H(x) − E[(H(x))])2]

= bias2 + variance

• the bias of H remains approximately the same as for ht :

Bias(H) =
1
T

T∑
t=1

Bias(ht)

• but the variance is reduced:

Var(H) ≈
1
T

Var(h1)

Variants:

• draw random subsamples of data→ "Pasting"

• draw random subsets of features→ "Random Subspaces"

• draw random subsamples and random features→ "Random
Patches"

Outline

1 Bagging

2 Random forests

3 AdaBoost
Introduction
Basic AdaBoost
Different views on AdaBoost
An additive logistic regression perspective

Idea: induce randomness in the base classifier (tree) and combine
the predictions of an ensemble of such trees (forest) by averaging
or majority vote.

• refinement of bagging trees

• (1st level of randomness) grow the trees on bootstrap samples

• (2nd level of randomness) when growing a tree, at each node
consider only a random subset of features (typically

√
d or

log2 d features)

• for each tree, the error rate for observation left out from the
learning set is monitored ("out-of-bag" error rate)

• the result is a collection of "de-correlated" trees that by
averaging/voting should lead to decreased variance of the
final predictor

Outline

1 Bagging

2 Random forests

3 AdaBoost
Introduction
Basic AdaBoost
Different views on AdaBoost
An additive logistic regression perspective

Outline

1 Bagging

2 Random forests

3 AdaBoost
Introduction
Basic AdaBoost
Different views on AdaBoost
An additive logistic regression perspective

General approach

(I will follow Freund & Schapire’s tutorial on boosting)

• let S = {(xi , yi)|i = 1, . . . , n} be a data set with yi ∈ {±1} and xi

a d−dimensional vector of features xij

• let there exist a learner (or a few) able to produce some basic
classifiers ht , based on sets such as S

• ht will be called "weak classifiers" and the condition is that
Err(ht) = 0.5 − εt where 0 < ε ≤ 0.5

• for each iteration t = 1, . . . ,T produce a version of the training
set St on which ht are fit and then, assemble their predictions

• how to select the training points at each round?
→ concentrate on most difficult points

• how to combine the weak classifiers?
→ take the (weighted) majority vote

Boosting
A general methodology of producing highly accurate predictors
based on averaging some weak classifiers.

Context

• PAC framework:
• a strong-PAC algorithm:

• for any distribution (of data)
• ∀ε > 0,∀δ > 0
• given enough data (i.i.d. from the distribution)
• with probability at least 1 − δ, the algorithm will find a classifier

with error ≤ ε

• a weak-PAC algorithm: the same conditions, but the
guaranteed error is ε ≥ 1

2 − γ

• when weak-PAC learnability leads to strong-PAC?

AdaBoost

• a development of previous "boosting" algorithms

• first to reach widespread applicability, due to simplicity of the
implementation and good observed performance (in addition
to theoretical performance)

• Freund & Schapire (EuroCOLT, 1995); the more complete
version: "A decision-theoretic generalization of on-line
learning and an application to boosting", J. Comp Sys Sc 1997

• AdaBoost: adaptive boosting

Outline

1 Bagging

2 Random forests

3 AdaBoost
Introduction
Basic AdaBoost
Different views on AdaBoost
An additive logistic regression perspective

Basic AdaBoost

Input: a training set S = {(xi , yi)} and the number of iterations T
Output: final classifier H as a combination of weak classifiers ht

for t = 1 to T do
construct a distribution Dt on {1, . . . , n}
find a weak classifier

ht : X → {−1,+1}

which minimizes the error εt on Dt ,

εt = PrDt [ht (xi) , yi]

end for

How to construct Dt?

• let D1(i) = 1/n (uninformative priors)

• given Dt and a weak classifier ht ,

Dt+1 =
Dt (i)

Zt
×

exp(−αt) if ht (xi) = yi

exp(αt) if ht (xi) , yi
=

Dt (i)
Zt

exp(−αtyiht (xi))

• Zt is a properly chosen normalization constant

•

αt =
1
2

ln
(
1 − εt
εt

)
∈ R+

What about the final decision/classifier?

H(x) = sign

 T∑
t=1

αtht (x)

How to use Dt for training a classifier?

• either generate a new training sample from S by sampling
according to Dt , or

• use directly the sample weights for constructing ht

(Classical) Example (Freund & Schapire)

Initial state:

D1

weak classifiers: single variable threshold function

(Classical) Example (Freund & Schapire)

Iteration 1:

h1

α

ε1

1

=0.30

=0.42

2D

(Classical) Example (Freund & Schapire)

Iteration 2:

α

ε2

2

=0.21

=0.65

h2 3D

(Classical) Example (Freund & Schapire)

Iteration 3:

h3

α

ε3

3=0.92

=0.14

(Classical) Example (Freund & Schapire)

Final classifier:

H
final

+ 0.92+ 0.650.42sign=

=

Training error theorem: let εt < 1/2 be the error rate at step t and
let γt = 1/2 − εt , then the training error of the final classifier is
upper bounded by

Errtrain(H) ≤ exp

−2
T∑

t=1

γ2
t

• then if ∀t : γt ≥ γ > 0, Errtrain ≤ exp(−2γ2T)

• it follows that Errtrain → 0 as T → ∞

• if γt � γ the convergence is much faster

What about overfitting?

• Occam’s razor suggests that simpler rules are preferable

• for SVMs, sparser models (less SVs) have better
generalization properties

• AdaBoost?

• practice shows that AdaBoost is resistant to overfitting, in
normal conditions

• in highly noisy conditions, AdaBoost can overfit! Regularized
versions exist to tackle this situation

What about overfitting?

• Occam’s razor suggests that simpler rules are preferable

• for SVMs, sparser models (less SVs) have better
generalization properties

• AdaBoost?

• practice shows that AdaBoost is resistant to overfitting, in
normal conditions

• in highly noisy conditions, AdaBoost can overfit! Regularized
versions exist to tackle this situation

What about overfitting?

• Occam’s razor suggests that simpler rules are preferable

• for SVMs, sparser models (less SVs) have better
generalization properties

• AdaBoost?

• practice shows that AdaBoost is resistant to overfitting, in
normal conditions

• in highly noisy conditions, AdaBoost can overfit! Regularized
versions exist to tackle this situation

Where does the robustness (to overfitting) come from?

• it’s a matter of margin! (most likely)

• define the margin as the "strength of the vote", i.e. "weighted
fraction of correct votes" - "weighted fraction of incorrect
votes"

The output from the final classifier (before sign()) ∈ [−1, 1] :

0 1−1
incorrect correct

high confidence, correctno confidencehigh confidence, but wrong

Example (from F&S’s tutorial): the "letters" data set from UCI, C4.5
weak classifiers

10 100 1000
0

5

10

15

20

er
ro

r

test

train

)T# of rounds (
-1 -0.5 0.5 1

0.5

1.0

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

1000
100

margin

5

#rounds
5 100 1000

train error 0.0 0.0 0.0
test error 8.4 3.3 3.1
%margins≤ 0.5 7.7 0.0 0.0
minimummargin 0.14 0.52 0.55

...and a real world example: prediction of
pCR in breast cancer

• AdaBoost with weighted top scoring pairs weak classifiers

• data: MDA gene expression data (∼22,000 variables) from
MAQC project: n = 130 training samples, n = 100 testing
samples

• data comes different hospitals, clinical series, no much control
on the representativeness of the training set

• endpoint: pathologic complete response (pCR)

Training and testing errors (with
functional margin)

iterations = 1, errtr = 0.17, errts = 0.39

-1 0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF of margins at iteration 1

Margin

C
D

F

-1 0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF of margins at iteration 1

Margin

C
D

F

iterations = 5, errtr = 0.02, errts = 0.34

-1 0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF of margins at iteration 5

Margin

C
D

F

-1 0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF of margins at iteration 5

Margin

C
D

F

iterations = 10, errtr = 0.0, errts = 0.31

-1 0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF of margins at iteration 10

Margin

C
D

F

-1 0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF of margins at iteration 10

Margin

C
D

F

iterations = 50, errtr = 0.0, errts = 0.23

-1 0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF of margins at iteration 50

Margin

C
D

F

-1 0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF of margins at iteration 50

Margin

C
D

F

iterations = 100, errtr = 0.0, errts = 0.22

-1 0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF of margins at iteration 100

Margin

C
D

F

-1 0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF of margins at iteration 100

Margin

C
D

F

Ideas:

• large margin allows a sparser approximation of the final
classifier, hence the final classifier should have better
generalization properties than its size would suggest

• the AdaBoost increases the margin as T grows and
decreases the effective complexity of the final classifier

• ∀θ > 0, Err(H) ≤ P̂r[margin ≤ θ] + O(
√

h/n/θ) where h is the
"complexity" of weak classifiers

• P̂r[margin ≤ θ]→ 0 exponentially fast in T if γt > θ

Outline

1 Bagging

2 Random forests

3 AdaBoost
Introduction
Basic AdaBoost
Different views on AdaBoost
An additive logistic regression perspective

A few different interpretations

• game theory: AdaBoost classifier as a solution of a minmax
game

• loss minimization

• additive logistic model

• maximum entropy

• etc. etc.

AdaBoost as a minimizer of exponential
loss

• let L(y, f(x)) be the loss function measuring the discrepancies
between true target (label or real value) y and the predicted
value f(x)

• it can be shown that AdaBoost minimizes (remember the
scaling factor Zt?)∏

t

Zt =
1
n

∑
i

exp(−yi f(xi))

where f(x) =
∑

t αtht (x)

• yf(x) is the (functional) margin, similar to SVM

• exponential loss is an upper bound of the 0-1 loss

• AdaBoost is a greedy procedure for loss minimization: αt and
ht are chosen locally to minimize the current loss

Coordinate descent [Breiman]

• let {h1, . . . , hm} be the space of all weak classifiers

• the goal is to find β1, . . . , βm (coordinates in the space of weak
classifiers) where the loss

L(β1, . . . , βm) =
∑

i

exp(−yi

∑
k

βk h(xi))

is minimized
• coordinate descent procedure:

• start with βk = 0
• at each step: choose coordinate βk (on axis ht) and update it

by an increment αt
• αt is chosen to maximize the decrease in loss

• this is the very procedure implemented by AdaBoost

Outline

1 Bagging

2 Random forests

3 AdaBoost
Introduction
Basic AdaBoost
Different views on AdaBoost
An additive logistic regression perspective

Gradient descent optimization (reminder)

• let Ω be a differentiable
optimization criterion

• let xk = xk−1 − γ∇Ω(xk−1),
then for some small γ > 0
Ω(xk) ≤ Ω(xk−1)

Issues:

• slow convergence

• sensitive to initial point

Gradient descent in function space

• in the following, we will generalize from ±1-valued classifiers
to real-valued functions

• change of notation: F becomes the generalized version of H
and f the generalized version of h, respectively

• FM(x) =
∑M

1 fm(x) is evaluated at each x
• gradient (steepest) descent:

fm(x) = −ρmgm(x) = −ρm∇F

[
Ey,x [L(y,F(x))]

]
F=Fm−1

ρm = arg min
ρ

Ey,x [L(y,Fm−1(x) − ρgm(x))]

Additive models
Friedman, Hastie, Tibshirani, Additive logistic regression: a statistical view of boosting, The Annals of Statistics, 2000.

• regression models: let y ∈ R and model the mean:

E [y |x] =

p∑
j=1

fj(xj),

where x = (x1, . . . , xp) ∈ Rp .

• iteratively update (backfit) the current approximation until
convergence:

fj(xj)← E

y −∑
k,j

fk (xk)
∣∣∣∣ xj

 .
• the final solution, F(x) =

∑p
1 fj(xj), is a minimizer of

E
[
(y − F(x))2

]
.

Extended additive models

• consider a family of functions

fm(x) = βmb(x; γm).

• b(·) : basis functions (linear, sigmoid, RBF, wavelets,. . .)
• Notes on basis functions:

• span a function subspace
• they need not be orthogonal, nor form a complete/minimal

base
• they can be chosen to form a redundant dictionary: matching

pursuit

• applications in (statistical) signal processing; image
compression; multi–scale data analysis;...

Fitting the model:

• generalized backfitting:

{βm, γm} ← arg min
β,γ

E

y − (

∑
k,m

βk b(x; γk) + βb(x; γ))

2
• greedy optimization: let FM(x) =

∑M
1 βmb(x; γm) be the

solution after M iterations; the successive approximations are

{βm, γm} = arg min
β,γ

E
[
(y − (Fm−1(x) + βb(x; γ))2

]
→ matching pursuit; in classification: kernel matching pursuit

Mallat, Zhang, Matching pursuit with time–frequency dictionaries, 1993
Vincent, Bengio, Kernel matching pursuit, 2002
Popovici, Thiran, Kernel matching pursuit for large datasets, 2005

From regression to classification

• goal (for binary problems): estimate Pr(y = 1|x)

• logistic regression:

ln
Pr(y = 1|x)

Pr(y = −1|x)
= FM(x)

with FM(x) ∈ R.

• ⇔ p(x) = Pr(y = 1|x) =
exp(FM(x))

1+exp(FM(x))

• FM is obtained by minimizing the expected loss:

FM(x) = arg min
F

Ey,x [L(y,F(x))] = arg min
F

Ex
[
Ey [L(y,F(x)))] |x

]

Generalized boosting algorithm

1: given {(xi , yi)|i = 1, . . . ,N}, let F0(x) = f0(x)
2: for all m = 1, . . . ,M do
3: compute the current negative gradient:

zi = − ∇FL(F)
∣∣∣
F=Fm−1

= −
∂L(yi ,F(xi))

∂F

∣∣∣∣∣∣
F=Fm−1(xi)

and fit fm using the new set {(xi , zi)|i = 1, . . . ,N}
4: find the step–size

cm = arg min
c

N∑
i=1

L(yi ,Fm−1(xi) + cfm(xi))

5: let Fm(x) = Fm−1(x) + cmfm(x)
6: end for
7: return final classifier sign [FM(x)]

Which loss function?

Loss functions

L
o
ss

y F(x)

Exponential loss

L(y,F) = E
[
e−yF(x)

]
Notes:

• L(y,F) is minimized at

F(x) =
1
2

ln
Pr(y = 1|x)

Pr(y = −1|x)

•
yF(x)
‖F‖ is called margin of sample x⇒ L(y,F) forces margin

maximization

• L is differentiable and an upper bound of 1[yF(x)<0]

• L has the same population minimizer as the binomial
log–likelihood

AdaBoost builds an additive logistic
regression model

1: let wi = 1/N
2: for all m = 1, . . . ,M do
3: fit the weak classifier fm(x) ∈ {±1} using the weights wi on

the training data
4: errm = Ew

[
1[y,fm(x)]

]
{ expectation with respect to weights! }

5: cm = ln 1−errm
errm

(note: cm = 2 arg minc L(
∑m−1

1 fi + cfm))
6: update the weights

wi ← wi exp
(
cm1[yi,fm(xi)]

)
, i = 1, . . . ,N

and normalize such that ‖w‖ = 1
7: end for
8: return final classifier sign

[∑M
m=1 cmfm(x)

]

Real AdaBoost: stagewise optimization
of exponential loss

1: let wi = 1/N
2: for all m = 1, . . . ,M do
3: fit the weak classifier using the weights wi on the training

data and obtain the posteriors

pm(x) = P̂w(y = 1|x) ∈ [0, 1]

4: let fm(x) = 1
2 ln pm(x)

1−pm(x)
{note: this is the local minimizer of L }

5: update the weights

wi ← wi exp (−yi fm(xi)) , i = 1, . . . ,N

and normalize such that ‖w‖ = 1
6: end for
7: return final classifier sign

[∑M
m=1 fm(x)

]

LogitBoost: stagewise opt. of binomial
log–likelihood

Let y∗ = (1 + y)/2 ∈ {0, 1} and
Pr(y∗ = 1|x) = p = exp(F(x))/(exp(F(x)) + exp(−F(x)))

1: let wi = 1/N, pi = 1/2,∀i = 1, . . . ,N, F(x) = 0
2: for all m = 1, . . . ,M do
3: let zi =

y∗i −pi

pi(1−pi)
{ new responses, instead of y}

4: let wi = pi(1 − pi)
5: fit fm by weighted least–square regression of zi to xi using

weights wi

6: update F ← F + 1/2fm
7: update p ← exp(F)/(exp(F) + exp(−F))
8: end for
9: return final classifier sign

[∑M
m=1 fm(x)

]

Which weak learner?

• any classifier with an error rate < 0.5

• decision stumps (classification tree with 1 node)

• classical classification trees

• top scoring pairs classifier

• linear (logistic) regression (an example later)

• radial basis functions

• . . .

Practical issues

• the weak classifier should not be too strong

• AdaBoost or LogitBoost are good first choices for
classification problems

• stopping rules:
• quit when the weak classifier cannot fit the data anymore
• choose M by an inner cross–validation or independent data set
• use AIC, BIC, MDL as criteria for choosing M

	Bagging
	Random forests
	AdaBoost
	Introduction
	Basic AdaBoost
	Different views on AdaBoost
	An additive logistic regression perspective

