
PA196: Pattern Recognition
09. Feature selection and extraction

Dr. Vlad Popovici
popovici@recetox.muni.cz

RECETOX
Masaryk University, Brno

Outline

1 Feature selection
Introduction
Filtering methods
Wrapper methods
Feature selection via regularization

2 Feature extraction
Principal component analysis
Multidimensional scaling

Outline

1 Feature selection
Introduction
Filtering methods
Wrapper methods
Feature selection via regularization

2 Feature extraction
Principal component analysis
Multidimensional scaling

What?

• the vectors to be classified are elements of some
d−dimensional space

• the problem is to identify those features that do not contribute
to the classification task and eliminate them from classifier
training

• thus, we seek the only d1 < d features that contribute to
classification

Why?
• improve classification performance:

• redundant features→ unstable classifier, poor fit, etc.
• sparser models have better generalization properties

• improve numerical stability

• reduce the required sample size

• reduce training time, classification time

• improve interpretability of the models

How?

• use some optimality criterion to select the optimal subset of
features→ search strategy

• optimality criterion:
• single-variate or multi-variate
• classifier-agnostic: filtering methods
• use the classifier performance: wrapper methods

• can be implicit in some classifiers:
• classification trees
• AdaBoost with decision stumps
• penalized methods (L1 penalty)
• etc

• hybrid: e.g. use a classification tree to select the features and
another learner for final classifier

WARNING
The feature selection should be included inside the cross-validation
loop (or any other equivalent method) for performance estimation.

Outline

1 Feature selection
Introduction
Filtering methods
Wrapper methods
Feature selection via regularization

2 Feature extraction
Principal component analysis
Multidimensional scaling

Filtering methods

Idea: replace the classifier as criterion with some other criterion
simpler (faster) to compute and find a subset of features satisfying
this objective.

• single-feature/variable methods

• feature-set methods

• do not guarantee that selected features are relevant for a
particular choice of classifier

• usually, introduces a new meta-parameter of the modeling
process: the number of features to keep→ this needs to be
optimized!

Single-feature methods

• evaluate each variable independently

• may or may not take into account the class label

• suitable approximation for high dimensional cases

• does not avoid selecting correlated features

• fast and easily integrated in modeling pipeline

• the simplest form: discard features that are constant or have
low variability

Using hypothesis testing for feature selection:

• use a statistical test (e.g. t−test) to test

H0 :there is no difference between classes

H1 :there is a difference between classes

• if H0 is rejected, we infer that the variable/feature is of some
importance (it bears information about the difference between
classes)

• the process involves computing a statistic and comparing it
with the expected values under H0; if the value is too
"unusual" then H0 is rejected

• in practice, this results in a "p-value" that is compared with a
predefined cut-off α (called α−level, traditionally 0.05 or 0.01)

• p-value: the probability, under H0, to obtain a statistic at least
as extreme as the one from the data at hand

• α−level: probability of falsely rejecting H0

Strategies for selecting the features:

• select top d1 features (rank the features by statistic or
p-values): d1 needs to be chosen somehow (e.g. by
cross-validation)

• select all features with p-value below a selected α−level
• this requires adjustment of p-values for multiple testing
• the easiest is to control family-wise error rate e.g. multiply

each p-value by the number of tests (variables)
• for indep. variables, the adjustment does not change the

ordering of variables (except for the ties), only the number of
variables with significant p-value

• popular approach: control for false discovery rate (FDR)
• more complex adjustments are possible - also to take into

account the correlation structure

Mutual information-based feature
selection

Let X and Y be two random variables, then their mutual
information (MI) is defined as

I(X ; Y) =

∫
Y

∫
X

p(x, y) log
p(x, y)

p(x)p(y)
dxdy

• provides a measure of dependency between 2 variables

• by considering X as a feature and Y the class to be predicted,
I(X ; Y) gives the relevance of X in predicting Y

• problem: estimation of MI? sample size?

• it can be extended to evaluate the relevance of a set of
feature: I({X1, . . . ,Xk }; Y)

• can be extended to multi-class problems

Other similar measures:

• Kullback-Leibler divergence,

KL(p||q) =

∫
p(x) ln

p(x)

q(x)
dx

which is usually used in a symmetrized version

• entropy

• Gini index (as in classification trees)

Issues with single-variable filtering:

• does not account for relationships
between variables

• if two variables are not useful for
classification when considered
isolated, their combination might
be useful

Subset feature selection

• need a criterion to evaluate a set of features (e.g. MI)

• need a strategy to generate all or some of the possible sets of
features

Criteria

Let J be the criterion function, which is to be maximized by the
best set of features.

• previous probabilistic measures can be extended to sets of
features (MI, KL, etc)

• some allow immediate extension to multiclass (e.g. MI) others
require a pair-wise approach: J(gi , gj) is computed for all pairs
of classes gi , gj

• popular choices are based on variance estimates.

• Example:
• J = Tr(S−1

W SB) where Tr(·) is the trace of a matrix, and SB and
SW are the between-class and within-class scatter matrices,
respectively

• J = |Σ̂|
|SW |

where Σ̂ is the estimated pooled variance matrix

• J =
Tr(SB)
Tr(SW)

• Mahalanobis cr. (for 2 classes):

J = (µ1 − µ2)T
(

Σ1 + Σ2

2

)−1

(µ1 − µ2)

• in general, the criterion is chosen to allow a recursive
decomposition (to compute J for k + 1 feature sets, one uses
the result for k feature sets)

• also, to be monotone:

X ⊆ Y ⇒ J(X) ≤ J(Y)

Search strategies

• Exhaustive search:
• affordable only if the total number of features is small
• involves enumerating all possible subsets
• can be implemented in a breadth-first or depth-first fashion
• can either start from full set of features (top-down) or from an

empty set of features (bottom-up)

• if J is monotone, one can use a branch-and-bound procedure
to avoid enumerating all sets; it will still produce a global
optimum

Suboptimal search strategies:

• sequential forward selection (SFS): add sequentially features
to the current set such that at each step the added feature
produces the maximum increase in J

• generalized SFS (GSFS): instead of adding a single feature,
add k features

• sequential backward selection (SBS): start with the full set
and remove at each step that feature that leads to minimum
decrease in J

• generalized SBS (GSBS):...

• "plus l minus r": add best l and remove worse r features,
using sequential selection

• ...

Floating search methods:

• sequential forward/backward floating selection

• a generalization of "plus l minus r" selection in which l and r
can vary

• for example, (sketch of) SFFS:
1 start with empty set of features
2 use SFS to obtain a set of 2 features
3 add the feature that increases J the most and remove the one

that decreases it the least; if it is the same feature, consider
another feature not yet used

4 continue removing features until J decreases or only 2 features
are left; then go to step 3

Outline

1 Feature selection
Introduction
Filtering methods
Wrapper methods
Feature selection via regularization

2 Feature extraction
Principal component analysis
Multidimensional scaling

Wrapper methods

• the optimality criterion J is now the performance of the
classifier to be trained

• any of the search strategies discussed before can be used in
this case

• usually is it more computationally expensive than filtering
methods

• produces features that are adapted to the intended classifier

• performance estimation is based on some re-sampling
technique (e.g. cross-validation)

Recursive feature elimination (RFE)

Idea: use the coefficients from the fitted model (classifier) to rank
the features and eliminate those with low impact. Repeat the
procedure until a convergence criterion is met.

• in LDA-like and (logistic) regression methods, the classifier
has the form h(x) =

∑
i wixi and |wi | can be used to judge the

importance of i−th feature

• in the case of regression, one may compute p-values
associated with the variables which, again, can be used for
ranking them (smaller p-values correspond to more important
variables)

RFE for linear SVM
• use sensitivity analysis of some cost function: what is the

influence of adding/removing a feature?
• the decision function is

h(x) =
∑
i∈SV

yiαi〈x, xi〉 =

〈
x,

∑
i∈SV

yiαixi

〉
• then, ∇xh(x) =

∑
i∈SV yiαixi = w and define the cost function

as J(w) = ‖w‖
• the smallest change is in the direction

wj = arg min
j

(|w|)

i.e. the smallest amplitude coefficient corresponds to the least
significant feature

• RFE proceeds by iteratively eliminating the least significant
feature(s) and retraining the classifiers on the updated data
set

RFE for non-linear SVM

• let H = [yiyjK(xi , xj)]ij

• define the cost function J = αT Hα − 〈α, e〉, e = [1, . . . , 1] ∈ Rd

• trick: to compute the change in J after removing feature k ,
assume no change in α when retraining on reduced-feature
set (if the feature is not important it would change (much) α)

• with this,
H(−k)

ij = yiyjK(x(−k)
i , x(−k)

j)

• the change in cost function is

∆J(k) = J − J(−k) = αT Hα − αT H(−k)α

Algorithm: to obtain a ranking of features

1 let X∅ be the original data set and let S = ∅ be the initial
ordered list of features (from least to most significant), X (S)

will denote the data set with features in S removed

2 repeat 3-6 until no more features are left:

3 train the SVM on X (S) and let α be the solution

4 compute ∆J(i) for all features not yet removed (i < S)

5 select k = arg mini ∆J(i)

6 update S = S ∪ {k }

Outline

1 Feature selection
Introduction
Filtering methods
Wrapper methods
Feature selection via regularization

2 Feature extraction
Principal component analysis
Multidimensional scaling

FS via regularization

Idea: introduce some constraints on the model such that the
number of effective features is decreased.

• regularization has not necessarily as ultimate goal feature
selection

• usually, reg. is imposed by penalizing some complexity
measure of the model or the loss functions for classification:

Loss + λPenalty

• if w is the vector of coefficients, the classical penalties are
‖w‖22 and ‖w‖1

• what about λ?

Example: penalized logistic regression.
The new loss function is

L(θ = {w,w0}) =
n∑

i=1

[yi(〈w, xi〉+ w0) − log(1 + exp(〈w, xi〉+ w0)]

+ λ

d∑
j=1

|wj |

From ESL:

• similar approaches exist for various classifiers

• there is a regularized version for classification trees

• the best choice for λ is usually obtained from cross-validation

Outline

1 Feature selection
Introduction
Filtering methods
Wrapper methods
Feature selection via regularization

2 Feature extraction
Principal component analysis
Multidimensional scaling

Feature extraction

Idea: transform the original feature space into a lower dimensional
space where some important property (e.g. separability) of data is
preserved or enhanced.

• the methods can be based on linear or non linear
combinations of original variables

• some methods are variable-directed: they are primarily
concerned with relations between variables

• while others are more individual-directed: the distances
between data points are of main interest

Outline

1 Feature selection
Introduction
Filtering methods
Wrapper methods
Feature selection via regularization

2 Feature extraction
Principal component analysis
Multidimensional scaling

Principal component analysis - PCA

• the goal is to find a linear transformation of the original
variables such that the resulting variables are decorrelated

• the hope is to find a smaller number of variables that explain
the data

• it is a basic data exploration technique

Find an orthogonal transformation A of
the input data, such that the new
variables

ξ = Ax

satisfy one of the following (equivalent)
constraints:

• the variance of ξj is stationary

• variables ξj are decorrelated

• the new axes are the best fit (least
square) of the data and are
orthogonal

x1

x2
ξ1

ξ2

The solution is given by the eigenvectors of the covariance matrix
of data vectors {xi}.

• let λi be the eigenvalues: their
ranking gives the order of the
principal axes

•
∑d

i=1 λi =
∑d

i=1 Var(ξi)

• dimensionality reduction: keep only
the first k principal components
(e.g. to account for 80% of total
variance)

• data approximation: reconstructing
the original space from only k PCs

λi

i

PCA in pattern recognition

• lots of applications, either alone or in combination with some
classifier

• common combinations: PCA + LDA, PCA + SVM

• kernel PCA

• classical application in computer vision: Turk and Pentland’s
eigenfaces (1991)

Eigenfaces

Problem: face recognition. (Turk, Pentland: Eigenfaces for
recognition. 1991)

Face recognition procedure (sketch):

• collect a number of images, say 4 images, per identity

• construct the eigenfaces, an keep the top k

• represent each face in terms of its coordinates in eigenface
space Ω = [ω1, . . . , ωk]

• for each identity, average the ω−vectors to obtain a
characteristic profile

• for a candidate face Ω∗ compute the Euclidean distance to
each for the Ω−vectors representing the identities

• if the distance is too large, the candidate face does not
represent the claimed identity

• the algorithm can be used for face detection as well

• it generated a lot of follow-up methods

• the method is easy to implement and can be easily be
adapted to low-bandwidth environments

Other methods:

• PCA is a special case of Karhunen-Loève transform

• generalizations of PCA: common principal components,
non-linear PCA

• independent component analysis: no longer an orthogonal
transform

• factor analysis, etc

Outline

1 Feature selection
Introduction
Filtering methods
Wrapper methods
Feature selection via regularization

2 Feature extraction
Principal component analysis
Multidimensional scaling

Multidimensional scaling (MDS)

• tries to find a set of points that would explain the given
dissimilarities (distances)

• it is used as an exploratory technique and for data
visualization

• the representation follows the idea: similar objects are
represent close together, dissimilar ones, farther apart

• can work both with metric and non-metric data

• in the classical approach, only one (dis)similarity matrix is
required; other versions may use several

Classical MDS:

• for two objects i and j the similarity is represented in terms of
Euclidean distance between points dij

• dij are related to the given similarity through a transformation
f : δij = f(dij)

• the problem is to find f such that an error measure is
minimized

• MDS is just an instance of larger class of methods: "manifold
learning"

• depending on the problem, other transformations could be
more useful for visualization or classification

• isomap, local linearly embedding spaces, etc etc

Example: Roweis and Saul: Nonlinear Dimensionality Reduction
by Locally Linear Embedding, Science 2000.

	Feature selection
	Introduction
	Filtering methods
	Wrapper methods
	Feature selection via regularization

	Feature extraction
	Principal component analysis
	Multidimensional scaling

