Chapter 4: Intermediate SQL

Database System Concepts, 61" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

Chapter 4: Intermediate SQL

Join EXxpressions

Views

Integrity Constraints

SQL Data Types and Schemas

Database System Concepts - 6" Edition 4.2 ©Silberschatz, Korth and Sudarshan

Triggers

- ~/p
i

g Joined Relations

g B

® Join operations take two relations and return as a result
another relation.

® A join operation is a Cartesian product which requires that
tuples in the two relations match (under some condition).
It also specifies the attributes that are present in the result
of the join

® The join operations are typically used as subquery
expressions in the from clause

Database System Concepts - 61" Edition 4.3 ©Silberschatz, Korth and Sudarshan

®m Relation course
course_id title dept_name | credits
BIO-301 | Genetics Biology +
CS-190 [Game Design| Comp. Sci. 4
CS-315 [Robotics Comp. Sci. | 3
® Relation prereq
course_id | prereq_id
BIO-301 | BIO-101
C5-190 C5-101
(CS5-347 C5-101

B Observe that

Join operations — Example

prereq information is missing for CS-315 and
course information is missing for CS-347

Database System Concepts - 61" Edition 4.4 ©Silberschatz, Korth and Sudarshan

Outer Join

® An extension of the join operation that avoids loss of
information.

® Computes the join and then adds tuples form one relation
that does not match tuples in the other relation to the result
of the join.

®m Uses null values.

Database System Concepts - 61" Edition 4.5 ©Silberschatz, Korth and Sudarshan

B course natural left outer join prereq

Left Outer Join

course_id title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
CS5-190 | Game Design| Comp. Sci. 4 C5-101
CS-315 |Robotics Comp. Sci. 3 null

Database System Concepts -

6th Edition

4.6

©Silberschatz, Korth and Sudarshan

Right Outer Join

®m course natural right outer join prereq

course_id title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
CS-190 | Game Design| Comp. Sci. 4 C5-101
CS-347 | null null null | €C5-101

Database System Concepts - 61" Edition 4.7 ©Silberschatz, Korth and Sudarshan

Joined Relations

m Join operations take two relations and return as a result
another relation.

B These additional operations are typically used as subguery
expressions in the from clause

® Join condition — defines which tuples in the two relations
match, and what attributes are present in the result of the join.

m Join type — defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated.

Join types Join Conditions
inner join natural

left outer join on < predicate>
right outer join using (A1, Ay, ..., A,)
full outer join

Database System Concepts - 61" Edition 4.8 ©Silberschatz, Korth and Sudarshan

Full OQuter Join

®m course natural full outer join prereq

course_id title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
CS5-190 | Game Design| Comp. Sci. 4 C5-101
CS-315 | Robotics Comp. Sci. 3 null
CS-347 | null null null | C5-101

Database System Concepts - 61" Edition 4.9 ©Silberschatz, Korth and Sudarshan

Joined Relations — Examples

B course inner join prereq on
course.course_id = prereqg.course_id

course_id title dept_name | credits | prereq_id | course_id
BIO-301 | Genetics Biology 4 BIO-101 | BIO-301
CS-190 |Game Design|Comp. Sci.| 4 | CS-101 | €S-190

B What is the difference between the above, and a natural join?

B course left outer join prereqg on
course.course_id = prereqg.course_id

course_id title dept_name | credits prereq_id | course_id
BIO-301 | Genetics Biology + BIO-101 | BIO-301
CS-190 | Game Design| Comp. Sci. 4 CS-101 | €C5-190
CS-315 | Robotics Comp. Hei. 3 null null

Database System Concepts - 61" Edition

4.10

©Silberschatz, Korth and Sudarshan

—
s ——

Joined Relations — Examples

B course natural right outer join prereq

course_id title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
CS5-190 | Game Design| Comp. Sci. 4 C5-101
CS-347 | null null null | CS-101

m course full outer join prereqg using (course _id)

course_id title dept_name | credits prereq_id
BIO-301 | Genetics Biology 4 BIO-101
CS-190 | Game Design| Comp. Sci. 4 C5-101
CS-315 | Robotics Comp. Sci. 3 null
CS-347 | null null null | CS-101

Database System Concepts - 61" Edition

411

©Silberschatz, Korth and Sudarshan

Join Types and Conditions Summary

Join types Join conditions

inner join natural

left outer join on < predicate>
right outer join using (A, Ay, ..., A))
full outer join

Database System Concepts - 61" Edition 412 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 61" Edition 413 ©Silberschatz, Korth and Sudarshan

Views

In some cases, it IS not desirable for all users to see the entire
logical model (that is, all the actual relations stored in the
database.)

Consider a person who needs to know an instructors name
and department, but not the salary. This person should see a
relation described, in SQL, by

select ID, name, dept_name
from instructor

A view provides a mechanism to hide certain data from the
view of certain users.

Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

—- View Definition

® Aview is defined using the create view statement which has
the form

create view v as < query expression >
where <guery expression> is any legal SQL expression. The
view name is represented by v.

®m Once aview Is defined, the view name can be used to refer to
the virtual relation that the view generates.

® View definition is not the same as creating a new relation by
evaluating the query expression

Rather, a view definition causes the saving of an expression;
the expression is substituted into queries using the view.

Database System Concepts - 61" Edition 414 ©Silberschatz, Korth and Sudarshan

—- Example Views

® A view of instructors without their salary

create view faculty as
select ID, name, dept_name
from instructor

® Find all instructors in the Biology department
select name
from faculty
where dept_name = ‘Biology’

®m Create a view of department salary totals
create view departments_total salary(dept_name, total salary) as
select dept_name, sum (salary)
from instructor
group by dept_name;

Database System Concepts - 61" Edition 4.15 ©Silberschatz, Korth and Sudarshan

—_—

,..é: Views Defined Using Other Views

B create view physics_fall 2009 as
select course.course_id, sec _id, building, room_number
from course, section
where course.course_id = section.course _id
and course.dept_name = 'Physics’
and section.semester = 'Fall’
and section.year = '2009’;

B create view physics_fall 2009 watson as
select course_id, room_number
from physics_fall 2009
where building= "Watson’;

Database System Concepts - 61" Edition 4.16 ©Silberschatz, Korth and Sudarshan

Update of a View

m Add a new tuple to faculty view which we defined earlier
insert into faculty values ('30765’, 'Green’, ‘Music’);
This insertion must be represented by the insertion of the tuple
('30765’, 'Green’, 'Music’, null)
Into the instructor relation

Database System Concepts - 61" Edition 417 ©Silberschatz, Korth and Sudarshan

ﬁg Some Updates cannot be Translated Uniquely

m create view instructor_info as
select ID, name, building
from instructor, department
where instructor.dept_name= department.dept_name;

® insert into instructor_info values ('69987’, 'White’, "Taylor’);
» which department, if multiple departments in Taylor?
» what if no department is in Taylor?
® Most SQL implementations allow updates only on simple views
The from clause has only one database relation.

The select clause contains only attribute names of the
relation, and does not have any expressions, aggregates, or
distinct specification.

Any attribute not listed in the select clause can be set to null
The query does not have a group by or having clause.

Database System Concepts - 61" Edition 4.18 ©Silberschatz, Korth and Sudarshan

And Some Not at All

B create view history _instructors as
select *
from instructor
where dept_name= 'History’;

® What happens if we insert ('25566’°, 'Brown’, 'Biology’, 100000)
Into history instructors?

Database System Concepts - 61" Edition 4.19 ©Silberschatz, Korth and Sudarshan

Integrity Constraints

®m Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the
database do not result in a loss of data consistency.

A checking account must have a balance greater than
$10,000.00

A salary of a bank employee must be at least $4.00 an
hour

A customer must have a (non-null) phone number

Database System Concepts - 61" Edition 4.20 ©Silberschatz, Korth and Sudarshan

Integrity Constraints on a Single Relation

not null
primary key
unique

check (P), where P is a predicate

Database System Concepts - 6" Edition 4.21 ©Silberschatz, Korth and Sudarshan

Not Null and Unigue Constraints

® not null

Declare name and budget to be not null

name varchar(20) not null
budget numeric(12,2) not null

® unique (Aq, Ay, ..., Ap)

The unique specification states that the attributes Al, A2, ...
Am

form a candidate key.

Candidate keys are permitted to be null (in contrast to primary
keys).

Database System Concepts - 61" Edition 4.22 ©Silberschatz, Korth and Sudarshan

-; The check clause

R

® check (P)
where P is a predicate

Example: ensure that semester is one of fall, winter, spring
or summer:

create table section (
course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room_number varchar (7),
time slot id varchar (4),
primary key (course_id, sec_id, semester, year),
check (semester in ('Fall’, 'Winter’, 'Spring’, 'Summer’))

);

Database System Concepts - 61" Edition 4.23 ©Silberschatz, Korth and Sudarshan

g Referential Integrity

® Ensures that a value that appears in one relation for a given
set of attributes also appears for a certain set of attributes in

another relation.

Example: If “Biology” is a department name appearing in
one of the tuples in the instructor relation, then there exists
a tuple in the department relation for “Biology”.

®m Let A be a set of attributes. Let R and S be two relations that
contain attributes A and where A is the primary key of S. A is
said to be a foreign key of R if for any values of A appearing
In R these values also appear in S.

Database System Concepts - 61" Edition 4.24 ©Silberschatz, Korth and Sudarshan

a!é- Cascading Actions In Referential Integrity

m create table course (
course_id char(5) primary key,
title varchar(20),
dept_name varchar(20) references department

)

B create table course (

dept_name varchar(20),

foreign key (dept_name) references department
on delete cascade
on update cascade,

)

B alternative actions to cascade: set null, set default

Database System Concepts - 61" Edition 4.25 ©Silberschatz, Korth and Sudarshan

—_— -/'!
'V

== Integrity Constraint Violation

m E.g. create table person (
ID char(10),
name char(40),
mother char(10),
father char(10),
primary key ID,
foreign key father references person,
foreign key mother references person)

B How to Insert a tuple without causing constraint violation?
Insert father and mother of a person before inserting person

OR, set father and mother to null initially, update after
Inserting all persons (not possible if father and mother
attributes declared to be not null)

OR defer constraint checking
» and use transactions — see Chapter 14

Database System Concepts - 61" Edition 4.26 ©Silberschatz, Korth and Sudarshan

Complex Check Clauses

® check (time_slot_id in (select time_slot_id from time_slot))
why not use a foreign key here?

®m Every section has at least one instructor teaching the section.
how to write this?

m Unfortunately: subquery in check clause not supported by
pretty much any database

Alternative: triggers (later)
B create assertion <assertion-name> check <predicate>;
Also not supported by anyone

Database System Concepts - 61" Edition 4.27 ©Silberschatz, Korth and Sudarshan

"Q'IL Built-in Time/Date Data Types in SQL

date: Dates, containing a (4 digit) year, month and date
Example: date ‘2005-7-27"

® time: Time of day, in hours, minutes and seconds.
Example: time ‘09:00:30° time ‘09:00:30.75’

® timestamp: date plus time of day
Example: timestamp ‘2005-7-27 09:00:30.75’

® interval: period of time

Example: interval ‘1’ day

Subtracting a date/time/timestamp value from another gives
an interval value

Interval values can be added to date/time/timestamp values

Database System Concepts - 61" Edition 4.28 ©Silberschatz, Korth and Sudarshan

User-Defined Types

B create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

create table department
(dept_name varchar (20),
building varchar (15),
budget Dollars);

Database System Concepts - 61" Edition 4.29 ©Silberschatz, Korth and Sudarshan

— - Domains

B create domain construct in SQL-92 creates user-defined
domain types

create domain person_name char(20) not null

m Types and domains are similar. Domains can have
constraints, such as not null, specified on them.

B create domain degree_level varchar(10)
constraint degree level test
check (value in ('Bachelors’, 'Masters’, ‘Doctorate’));

Database System Concepts - 61" Edition 4.30 ©Silberschatz, Korth and Sudarshan

Large-Object Types

®m Large objects (photos, videos, CAD files, etc.) are stored as a
large object:
blob: binary large object -- object is a large collection of

uninterpreted binary data (whose interpretation is left to an
application outside of the database system)

clob: character large object -- object is a large collection of
character data -

When a query returns a large object, a pointer is returned
rather than the large object itself.

Database System Concepts - 61" Edition 4.31 ©Silberschatz, Korth and Sudarshan

-; Index Creation

®m create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot_cred numeric (3,0) default O,
primary key (ID))

®m create index studentlD_index on student(ID)

B Indices are data structures used to speed up access to records
with specified values for index attributes

e.g. select *
from student
where ID = 12345’

can be executed by using the index to find the required
record, without looking at all records of student

More on indices in Chapter 11

Database System Concepts - 61" Edition 4.32 ©Silberschatz, Korth and Sudarshan

Triggers

m A trigger is a statement that is executed automatically by
the system as a side effect of a modification to the
database.

® To design a trigger mechanism, we must:

Specify the conditions under which the trigger is to be
executed.

Specify the actions to be taken when the trigger
executes.

m Triggers introduced to SQL standard in SQL:1999, but
supported even earlier using non-standard syntax by
most databases.

Syntax illustrated here may not work exactly on your
database system; check the system manuals

Database System Concepts - 61" Edition 4.33 ©Silberschatz, Korth and Sudarshan

,.g.: Trigger Example

B Maintain total credits earned for each student
Executed when a student passes an exam
l.e. update of grade attribute of takes table

B create trigger credits_earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> 'F’ and nrow.grade is not null
and (orow.grade = 'F’ or orow.grade is null)
begin
update student
set tot_cred=tot_cred +
(select credits from course
where course.course_id= nrow.course_id)
where student.id = nrow.id;
end,;

Database System Concepts - 61" Edition 4.34 ©Silberschatz, Korth and Sudarshan

Trigger Example

m Use of triggers to implement a special integrity constraint:

time_slot_id is not a primary key of timeslot, so we cannot
create a foreign key constraint from section to timeslot.

® Insert trigger on section table:

create trigger timeslot_checkl after insert on section
referencing new row as nrow
for each row
when (nrow.time_slot_id not in (
select time_slot_id
from time_slot)) /* time_slot_id not present in time_slot */
begin
rollback

end; Rollback command cancels all changes
to DB currently made (a transaction).

So the INSERT is taken back.

Database System Concepts - 61" Edition 4.35 ©Silberschatz, Korth and Sudarshan

Trigger Example Cont.

B Insert trigger on time_slot table:

create trigger timeslot_check2 after delete on time_slot
referencing old row as orow
for each row
when (orow.time_slot_id not in (
select time_slot_id
from time_slot)
/* last tuple for time slot id deleted from time slot */
and orow.time_slot_id in (
select time_slot_id
from section)) /* and time_slot_id still referenced from section*/
begin
rollback
end,;

Database System Concepts - 61" Edition 4.36 ©Silberschatz, Korth and Sudarshan

:’é Triggering Events and Actions in SQL

®m Triggering event can be insert, delete or update
®m Triggers on update can be restricted to specific attributes
E.g., after update of takes on grade

®m Values of attributes before and after an update can be
referenced

referencing old row as : for deletes and updates
referencing new row as : for inserts and updates

®m Triggers can be activated before an event, which can serve as
extra constraints. E.g. convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = ‘)
begin atomic
set nrow.grade = null;
end;

Database System Concepts - 61" Edition 4.37 ©Silberschatz, Korth and Sudarshan

Statement Level Triggers

® Instead of executing a separate action for each affected
row, a single action can be executed for all rows affected by
a transaction

Use for each statement instead of for each row

Use referencing old table or referencing new
table to refer to temporary tables (called transition
tables) containing the affected rows

Can be more efficient when dealing with SQL
statements that update a large number of rows

Database System Concepts - 61" Edition 4.38 ©Silberschatz, Korth and Sudarshan

:’é When Not To Use Triggers

®m Triggers were used earlier for tasks such as
maintaining summary data (e.g., total salary of each department)

Replicating databases by recording changes to special relations
(called change or delta relations) and having a separate process
that applies the changes over to a replica

B There are better ways of doing these now:

Databases today provide built in materialized view facilities to
maintain summary data

Databases provide built-in support for replication
® Encapsulation facilities can be used instead of triggers in many cases
Define methods to update fields

Carry out actions as part of the update methods instead of
through a trigger

Database System Concepts - 61" Edition 4.39 ©Silberschatz, Korth and Sudarshan

When Not To Use Triggers

B Risk of unintended execution of triggers, for example, when
loading data from a backup copy
replicating updates at a remote site
Trigger execution can be disabled before such actions.
®m Other risks with triggers:

Error leading to failure of critical transactions that set off the
trigger

Cascading execution

Database System Concepts - 61" Edition 4.40 ©Silberschatz, Korth and Sudarshan

End of Chapter 4

Database System Concepts, 61" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

