
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 4: Intermediate SQL

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and Sudarshan 4.2 Database System Concepts - 6th Edition

Chapter 4: Intermediate SQL

 Join Expressions

 Views

 Integrity Constraints

 SQL Data Types and Schemas

 Triggers

©Silberschatz, Korth and Sudarshan 4.3 Database System Concepts - 6th Edition

Joined Relations

 Join operations take two relations and return as a result

another relation.

 A join operation is a Cartesian product which requires that

tuples in the two relations match (under some condition).

It also specifies the attributes that are present in the result

of the join

 The join operations are typically used as subquery

expressions in the from clause

©Silberschatz, Korth and Sudarshan 4.4 Database System Concepts - 6th Edition

Join operations – Example

 Relation course

 Relation prereq

 Observe that

 prereq information is missing for CS-315 and

 course information is missing for CS-347

©Silberschatz, Korth and Sudarshan 4.5 Database System Concepts - 6th Edition

Outer Join

 An extension of the join operation that avoids loss of

information.

 Computes the join and then adds tuples form one relation

that does not match tuples in the other relation to the result

of the join.

 Uses null values.

©Silberschatz, Korth and Sudarshan 4.6 Database System Concepts - 6th Edition

Left Outer Join

 course natural left outer join prereq

©Silberschatz, Korth and Sudarshan 4.7 Database System Concepts - 6th Edition

Right Outer Join

 course natural right outer join prereq

©Silberschatz, Korth and Sudarshan 4.8 Database System Concepts - 6th Edition

Joined Relations

 Join operations take two relations and return as a result

another relation.

 These additional operations are typically used as subquery

expressions in the from clause

 Join condition – defines which tuples in the two relations

match, and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not

match any tuple in the other relation (based on the join

condition) are treated.

©Silberschatz, Korth and Sudarshan 4.9 Database System Concepts - 6th Edition

Full Outer Join

 course natural full outer join prereq

©Silberschatz, Korth and Sudarshan 4.10 Database System Concepts - 6th Edition

Joined Relations – Examples

 course inner join prereq on

course.course_id = prereq.course_id

 What is the difference between the above, and a natural join?

 course left outer join prereq on

course.course_id = prereq.course_id

©Silberschatz, Korth and Sudarshan 4.11 Database System Concepts - 6th Edition

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

©Silberschatz, Korth and Sudarshan 4.12 Database System Concepts - 6th Edition

Join Types and Conditions Summary

©Silberschatz, Korth and Sudarshan 4.13 Database System Concepts - 6th Edition

Views

 In some cases, it is not desirable for all users to see the entire

logical model (that is, all the actual relations stored in the

database.)

 Consider a person who needs to know an instructors name

and department, but not the salary. This person should see a

relation described, in SQL, by

 select ID, name, dept_name

 from instructor

 A view provides a mechanism to hide certain data from the

view of certain users.

 Any relation that is not of the conceptual model but is made

visible to a user as a “virtual relation” is called a view.

©Silberschatz, Korth and Sudarshan 4.14 Database System Concepts - 6th Edition

View Definition

 A view is defined using the create view statement which has

the form

 create view v as < query expression >

 where <query expression> is any legal SQL expression. The

view name is represented by v.

 Once a view is defined, the view name can be used to refer to

the virtual relation that the view generates.

 View definition is not the same as creating a new relation by

evaluating the query expression

 Rather, a view definition causes the saving of an expression;

the expression is substituted into queries using the view.

©Silberschatz, Korth and Sudarshan 4.15 Database System Concepts - 6th Edition

Example Views

 A view of instructors without their salary

 create view faculty as

 select ID, name, dept_name

 from instructor

 Find all instructors in the Biology department

 select name

 from faculty

 where dept_name = „Biology‟

 Create a view of department salary totals

 create view departments_total_salary(dept_name, total_salary) as

 select dept_name, sum (salary)

 from instructor

 group by dept_name;

©Silberschatz, Korth and Sudarshan 4.16 Database System Concepts - 6th Edition

Views Defined Using Other Views

 create view physics_fall_2009 as

 select course.course_id, sec_id, building, room_number

 from course, section

 where course.course_id = section.course_id

 and course.dept_name = ‟Physics‟

 and section.semester = ‟Fall‟

 and section.year = ‟2009‟;

 create view physics_fall_2009_watson as

 select course_id, room_number

 from physics_fall_2009

 where building= ‟Watson‟;

©Silberschatz, Korth and Sudarshan 4.17 Database System Concepts - 6th Edition

Update of a View

 Add a new tuple to faculty view which we defined earlier

 insert into faculty values (‟30765‟, ‟Green‟, ‟Music‟);

 This insertion must be represented by the insertion of the tuple

 (‟30765‟, ‟Green‟, ‟Music‟, null)

 into the instructor relation

©Silberschatz, Korth and Sudarshan 4.18 Database System Concepts - 6th Edition

Some Updates cannot be Translated Uniquely

 create view instructor_info as

 select ID, name, building

 from instructor, department

 where instructor.dept_name= department.dept_name;

 insert into instructor_info values (‟69987‟, ‟White‟, ‟Taylor‟);

which department, if multiple departments in Taylor?

what if no department is in Taylor?

 Most SQL implementations allow updates only on simple views

 The from clause has only one database relation.

 The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates, or

distinct specification.

 Any attribute not listed in the select clause can be set to null

 The query does not have a group by or having clause.

©Silberschatz, Korth and Sudarshan 4.19 Database System Concepts - 6th Edition

And Some Not at All

 create view history_instructors as

 select *

 from instructor

 where dept_name= ‟History‟;

 What happens if we insert (‟25566‟, ‟Brown‟, ‟Biology‟, 100000)

into history_instructors?

©Silberschatz, Korth and Sudarshan 4.20 Database System Concepts - 6th Edition

Integrity Constraints

 Integrity constraints guard against accidental damage to the

database, by ensuring that authorized changes to the

database do not result in a loss of data consistency.

 A checking account must have a balance greater than

$10,000.00

 A salary of a bank employee must be at least $4.00 an

hour

 A customer must have a (non-null) phone number

©Silberschatz, Korth and Sudarshan 4.21 Database System Concepts - 6th Edition

 Integrity Constraints on a Single Relation

 not null

 primary key

 unique

 check (P), where P is a predicate

©Silberschatz, Korth and Sudarshan 4.22 Database System Concepts - 6th Edition

Not Null and Unique Constraints

 not null

 Declare name and budget to be not null

 name varchar(20) not null

 budget numeric(12,2) not null

 unique (A1, A2, …, Am)

 The unique specification states that the attributes A1, A2, …

Am

form a candidate key.

 Candidate keys are permitted to be null (in contrast to primary

keys).

©Silberschatz, Korth and Sudarshan 4.23 Database System Concepts - 6th Edition

The check clause

 check (P)

 where P is a predicate

Example: ensure that semester is one of fall, winter, spring

or summer:

create table section (

 course_id varchar (8),

 sec_id varchar (8),

 semester varchar (6),

 year numeric (4,0),

 building varchar (15),

 room_number varchar (7),

 time slot id varchar (4),

 primary key (course_id, sec_id, semester, year),

 check (semester in (‟Fall‟, ‟Winter‟, ‟Spring‟, ‟Summer‟))

);

©Silberschatz, Korth and Sudarshan 4.24 Database System Concepts - 6th Edition

Referential Integrity

 Ensures that a value that appears in one relation for a given

set of attributes also appears for a certain set of attributes in

another relation.

 Example: If “Biology” is a department name appearing in

one of the tuples in the instructor relation, then there exists

a tuple in the department relation for “Biology”.

 Let A be a set of attributes. Let R and S be two relations that

contain attributes A and where A is the primary key of S. A is

said to be a foreign key of R if for any values of A appearing

in R these values also appear in S.

©Silberschatz, Korth and Sudarshan 4.25 Database System Concepts - 6th Edition

Cascading Actions in Referential Integrity

 create table course (

 course_id char(5) primary key,

 title varchar(20),

 dept_name varchar(20) references department

)

 create table course (

 …

 dept_name varchar(20),

 foreign key (dept_name) references department

 on delete cascade

 on update cascade,

 . . .

)

 alternative actions to cascade: set null, set default

©Silberschatz, Korth and Sudarshan 4.26 Database System Concepts - 6th Edition

Integrity Constraint Violation

 E.g. create table person (

 ID char(10),

 name char(40),

 mother char(10),

 father char(10),

 primary key ID,

 foreign key father references person,

 foreign key mother references person)

 How to insert a tuple without causing constraint violation?

 insert father and mother of a person before inserting person

 OR, set father and mother to null initially, update after

inserting all persons (not possible if father and mother

attributes declared to be not null)

 OR defer constraint checking

and use transactions – see Chapter 14

©Silberschatz, Korth and Sudarshan 4.27 Database System Concepts - 6th Edition

Complex Check Clauses

 check (time_slot_id in (select time_slot_id from time_slot))

 why not use a foreign key here?

 Every section has at least one instructor teaching the section.

 how to write this?

 Unfortunately: subquery in check clause not supported by

pretty much any database

 Alternative: triggers (later)

 create assertion <assertion-name> check <predicate>;

 Also not supported by anyone

©Silberschatz, Korth and Sudarshan 4.28 Database System Concepts - 6th Edition

Built-in Time/Date Data Types in SQL

 date: Dates, containing a (4 digit) year, month and date

 Example: date „2005-7-27‟

 time: Time of day, in hours, minutes and seconds.

 Example: time „09:00:30‟ time „09:00:30.75‟

 timestamp: date plus time of day

 Example: timestamp „2005-7-27 09:00:30.75‟

 interval: period of time

 Example: interval „1‟ day

 Subtracting a date/time/timestamp value from another gives

an interval value

 Interval values can be added to date/time/timestamp values

©Silberschatz, Korth and Sudarshan 4.29 Database System Concepts - 6th Edition

User-Defined Types

 create type construct in SQL creates user-defined type

 create type Dollars as numeric (12,2) final

 create table department

(dept_name varchar (20),

building varchar (15),

budget Dollars);

©Silberschatz, Korth and Sudarshan 4.30 Database System Concepts - 6th Edition

Domains

 create domain construct in SQL-92 creates user-defined

domain types

 create domain person_name char(20) not null

 Types and domains are similar. Domains can have

constraints, such as not null, specified on them.

 create domain degree_level varchar(10)

constraint degree_level_test

check (value in (‟Bachelors‟, ‟Masters‟, ‟Doctorate‟));

©Silberschatz, Korth and Sudarshan 4.31 Database System Concepts - 6th Edition

Large-Object Types

 Large objects (photos, videos, CAD files, etc.) are stored as a

large object:

 blob: binary large object -- object is a large collection of

uninterpreted binary data (whose interpretation is left to an

application outside of the database system)

 clob: character large object -- object is a large collection of

character data

 When a query returns a large object, a pointer is returned

rather than the large object itself.

©Silberschatz, Korth and Sudarshan 4.32 Database System Concepts - 6th Edition

Index Creation

 create table student

(ID varchar (5),

name varchar (20) not null,

dept_name varchar (20),

tot_cred numeric (3,0) default 0,

primary key (ID))

 create index studentID_index on student(ID)

 Indices are data structures used to speed up access to records

with specified values for index attributes

 e.g. select *

 from student

 where ID = „12345‟

can be executed by using the index to find the required

record, without looking at all records of student

More on indices in Chapter 11

©Silberschatz, Korth and Sudarshan 4.33 Database System Concepts - 6th Edition

Triggers

 A trigger is a statement that is executed automatically by

the system as a side effect of a modification to the

database.

 To design a trigger mechanism, we must:

 Specify the conditions under which the trigger is to be

executed.

 Specify the actions to be taken when the trigger

executes.

 Triggers introduced to SQL standard in SQL:1999, but

supported even earlier using non-standard syntax by

most databases.

 Syntax illustrated here may not work exactly on your

database system; check the system manuals

©Silberschatz, Korth and Sudarshan 4.34 Database System Concepts - 6th Edition

Trigger Example

 Maintain total credits earned for each student

 Executed when a student passes an exam

 i.e. update of grade attribute of takes table

 create trigger credits_earned after update of takes on (grade)

referencing new row as nrow

referencing old row as orow

for each row

when nrow.grade <> ‟F‟ and nrow.grade is not null

 and (orow.grade = ‟F‟ or orow.grade is null)

begin

 update student

 set tot_cred= tot_cred +

 (select credits from course

 where course.course_id= nrow.course_id)

 where student.id = nrow.id;

end;

©Silberschatz, Korth and Sudarshan 4.35 Database System Concepts - 6th Edition

Trigger Example

 Use of triggers to implement a special integrity constraint:

 time_slot_id is not a primary key of timeslot, so we cannot

create a foreign key constraint from section to timeslot.

 Insert trigger on section table:

 create trigger timeslot_check1 after insert on section

referencing new row as nrow

for each row

when (nrow.time_slot_id not in (

 select time_slot_id

 from time_slot)) /* time_slot_id not present in time_slot */

begin

 rollback

end; Rollback command cancels all changes

to DB currently made (a transaction).

So the INSERT is taken back.

©Silberschatz, Korth and Sudarshan 4.36 Database System Concepts - 6th Edition

Trigger Example Cont.

 Insert trigger on time_slot table:

create trigger timeslot_check2 after delete on time_slot

referencing old row as orow

for each row

when (orow.time_slot_id not in (

 select time_slot_id

 from time_slot)

 /* last tuple for time slot id deleted from time slot */

 and orow.time_slot_id in (

 select time_slot_id

 from section)) /* and time_slot_id still referenced from section*/

begin

 rollback

end;

©Silberschatz, Korth and Sudarshan 4.37 Database System Concepts - 6th Edition

Triggering Events and Actions in SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific attributes

 E.g., after update of takes on grade

 Values of attributes before and after an update can be
referenced

 referencing old row as : for deletes and updates

 referencing new row as : for inserts and updates

 Triggers can be activated before an event, which can serve as
extra constraints. E.g. convert blank grades to null.

 create trigger setnull_trigger before update of takes
 referencing new row as nrow
 for each row
 when (nrow.grade = „ „)
 begin atomic
 set nrow.grade = null;
 end;

©Silberschatz, Korth and Sudarshan 4.38 Database System Concepts - 6th Edition

Statement Level Triggers

 Instead of executing a separate action for each affected

row, a single action can be executed for all rows affected by

a transaction

 Use for each statement instead of for each row

 Use referencing old table or referencing new

table to refer to temporary tables (called transition

tables) containing the affected rows

 Can be more efficient when dealing with SQL

statements that update a large number of rows

©Silberschatz, Korth and Sudarshan 4.39 Database System Concepts - 6th Edition

When Not To Use Triggers

 Triggers were used earlier for tasks such as

 maintaining summary data (e.g., total salary of each department)

 Replicating databases by recording changes to special relations

(called change or delta relations) and having a separate process

that applies the changes over to a replica

 There are better ways of doing these now:

 Databases today provide built in materialized view facilities to

maintain summary data

 Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in many cases

 Define methods to update fields

 Carry out actions as part of the update methods instead of

through a trigger

©Silberschatz, Korth and Sudarshan 4.40 Database System Concepts - 6th Edition

When Not To Use Triggers

 Risk of unintended execution of triggers, for example, when

 loading data from a backup copy

 replicating updates at a remote site

 Trigger execution can be disabled before such actions.

 Other risks with triggers:

 Error leading to failure of critical transactions that set off the

trigger

 Cascading execution

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 4

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

