
Redux

Zuzana Dankovčíková

“… predictable state container for JavaScript apps.” -- Redux docs

http://redux.js.org/

Why do we need Redux?
We have already solved many problems of state management by

• treating data as immutable objects and

• having most of the data stored in the root component.

Problem 1: What is “root component”
New feature request:

 Displaying number of TODOs next to the avatar of the logged-in user?

 “Unrelated” components dependent on the same data.

 Lifting state up. But until when? How to make it scalable?

https://facebook.github.io/react/docs/lifting-state-up.html

Problem 2: Callbacks chain

Submit

button

EditItem

component

EditItem

container

TodoList

component

TodoList

container

Problem 2: Callbacks chain
class TodoListContainer extends React.Component {

 // other methods

 // ...

 render() {

 return (

 <TodoListComponent

 list={this.state.list}

 editedItemId={this.state.editedItemId}

 createNewFormVisible={this.state.createNewFormVisible}

 isDragging={this.state.isDragging}

 onDelete={this._deleteItem}

 onExpand={this._startEditing}

 onCancel={this._cancelEditing}

 onSave={this._updateItem}

 onReorder={this._moveItem}

 onCreateNewClick={this._showCreateNewForm}

 onCreateCancel={this._hideCreateNewForm}

 onCreate={this._createNewItem}

 onDragStarted={this._itemDragStarted}

 onDragEnded={this._itemDragEnded}

 />

);

 }

}

Submit

button

EditItem

component

EditItem

container

TodoList

component

TodoList

container

Motivation
Complex state management made easy

• Scalable state management

• Deterministic and easily traceable changes

• State is decoupled from presentation (won’t break with every UI change)

• Better dev tools than console.log()

• Better testability

3 Principles of Redux

Single source of truth:

"The whole state of your app is stored in an object tree inside a single store."

State is read-only:

"The only way to change the state tree is to emit an action, an object describing what happened."

Changes are made with pure functions:

“To specify how the actions transform the state tree, you write pure reducers."

Building blocks
Action

• describes UI changes

Store

• receives action via dispatcher

• calls root reducer

Reducer

• (prevState, action) => newState

View

• gets notified about state change

• rerenders with new data

Actions & Action creators
“Actions are payloads of information that send data from your application to your store. They

are the only source of information for the store.”

A new developer can go through all defined actions and immediately see the entire API - all

user interactions that are possible in your app.

17-redux-action-creators

{

 type: 'TODO_LIST_ITEM_CREATE',

 payload: {

 id: 42,

 text: 'Buy milk'

 }

}

const createItem = (text) => ({

 type: TODO_LIST_ITEM_CREATE,

 payload: {

 id: uuid(),

 text: text

 }

});

Action creator - helper function for creating actions Action - simple JS objects describing data change

Reducers
Action describes WHAT has happened, reducer specifies HOW the state should change

• 1 root reducer that can be composed from many others

• Pure function (prevState, action) => nextState

What is a pure function? (args) => result

• It does not make outside network or database calls.

• Its return value depends solely on the values of its parameters.

• Its arguments should be considered "immutable" (must not be changed)

• Calling a pure function with the same set of arguments will always return the same value.

Pure or impure?

var count = 0;

cosnt increaseCount = (val) => count += val;

const time = () => new Date().toLocaleTimeString();

const addFive = (val) => val + 5;

const getMagicNumber = () => Math.random();

Reducers

Previous state argument

• Specify default value

• Return same reference

for irrelevant action type

18-redux-reducers

function counter(state = 0, action) {

 switch (action.type) {

 case 'INCREMENT':

 return state + 1;

 case 'DECREMENT':

 return state - 1;

 default:

 return state;

 }

}

Reducer composition

18-redux-reducers

Store
Single store for whole app managed by Redux (we only provide a root reducer)

• Holds application state;

• Allows access to state via getState();

• Allows state to be updated via dispatch(action);

• Registers listeners via subscribe(listener);

• Handles unregistering of listeners via the function returned by subscribe(listener).

-- Redux docs

http://redux.js.org/docs/basics/Store.html

Minimalistic API

• createStore(rootReducer)

• store.getState()

• store.dispatch(action)

• store.subscribe(listener)

• combineReducers({…})

• What is the store lifecycle?

 initial call to reducer + call on every dispatched action

19-install-redux

React-redux integration

You can connect your existing app to the store by hand.

But you would loose many optimizations react-redux package

brings.

Use react-redux library instead:

1. Wrap your root component in <Provider>

2. Connect components to redux store

• connect(mapStateToProps, mapDispatchToProps)(Component)

20-connect-root-component

https://github.com/reactjs/react-redux/blob/master/docs/api.md
https://github.com/reactjs/react-redux/blob/master/docs/api.md
https://github.com/reactjs/react-redux/blob/master/docs/api.md

Moving more state to the Redux store
All state from the root component shall be moved to the store

• New actions,

• New reducers

• No internal state in TodoList.jsx

 the old container is basically useless

21-move-state-to-store

Be declarative

const editedItemId = (state = null, action) => {

 switch(action.type) {

 case TODO_LIST_ITEM_START_EDITING:

 return action.payload.id;

 case TODO_LIST_ITEM_CANCEL_EDITING:

 case TODO_LIST_ITEM_UPDATE:

 case TODO_LIST_ITEM_DELETE:

 return null;

 default:

 return null;

 }

};

Action describes what has happened, reducer decides how to react

dispatch({

 type: 'SET_EDITED_ITEM_ID',

 payload: {

 id: 42

 }

});

dispatch({

 type: 'CLEAR_EDITED_ITEM_ID'

});

Should all components be stateless?
“How much” state should we move to the redux store?

Does your state influence more components in your application?

 (and the common parent is way up in the hierarchy)

 move state to redux store

 TodoList.jsx

Is the state well encapsulated and local for the component?

 It can stay in the stateful component.

 TodoListEditedItem.jsx

Benefits
State described as plain object and arrays:
• Inject initial state during server rendering
• Persist to and load from localStorage
• UI is function of state (state -> UI -> deterministic behavior)
• Immutability (React performance)

State changes described as plain objects
• Replaying the history (reproducing bugs)
• Pass actions over network in collaborative environments (google docs, trello live updates)
• Implementing undo
• Awesome tooling

State modification as pure functions
• Testability
• Hot reloading

3rd party modules integration (middleware, libs that need to store state...)

Drawbacks
• Boilerplate & Verbosity

-> have a look at Repatch

• "One huge object"

-> pretty much eliminated by reducer composition and ImmutableJS

• "Component state vs Redux store" dilema

-> see #1287 and: "Do whatever is less akward."

https://hackernoon.com/repatch-the-simplified-redux-2c4aa5c25fa9
https://hackernoon.com/repatch-the-simplified-redux-2c4aa5c25fa9
https://hackernoon.com/repatch-the-simplified-redux-2c4aa5c25fa9
https://github.com/reactjs/redux/issues/1287

3 Principles of Redux - revised

Single source of truth:

"The whole state of your app is stored in an object tree inside a single store."

State is read-only:

"The only way to change the state tree is to emit an action, an object describing what happened."

Changes are made with pure functions:

“To specify how the actions transform the state tree, you write pure reducers."

Part 2

What about our props explosion?

<TodoListComponent

 list={this.state.list}

 editedItemId={this.state.editedItemId}

 createNewFormVisible={this.state.createNewFormVisible}

 isDragging={this.state.isDragging}

 onDelete={this._deleteItem}

 onExpand={this._startEditing}

 onCancel={this._cancelEditing}

 onSave={this._updateItem}

 onReorder={this._moveItem}

 onCreateNewClick={this._showCreateNewForm}a

 onCreateCancel={this._hideCreateNewForm}

 onCreate={this._createNewItem}

 onDragStarted={this._itemDragStarted}

 onDragEnded={this._itemDragEnded}

/>

<TodoListComponent

 list={this.props.list}

 editedItemId={this.props.editedItemId}

 createNewFormVisible={this.props.isCreateNewFormOpen}

 isDragging={this.props.isDragging}

 onDelete={this.props.onDelete}

 onExpand={this.props.onStartEditing}

 onCancel={this.props.onCancelEditing}

 onSave={this.props.onUpdate}

 onReorder={this.props.onMove}

 onCreateNewClick={this.props.onCreateNewClick}

 onCreateCancel={this.props.onCreateNewCancel}

 onCreate={this.props.onCreateNew}

 onDragStarted={this.props.onDragStarted}

 onDragEnded={this.props.onDragEnded}

/>

Connecting more components

Connecting more components to store

<TodoListComponent

 list={this.state.list}

 editedItemId={this.state.editedItemId}

 createNewFormVisible={this.state.createNewFormVisible}

 isDragging={this.state.isDragging}

 onDelete={this._deleteItem}

 onExpand={this._startEditing}

 onCancel={this._cancelEditing}

 onSave={this._updateItem}

 onReorder={this._moveItem}

 onCreateNewClick={this._showCreateNewForm}a

 onCreateCancel={this._hideCreateNewForm}

 onCreate={this._createNewItem}

 onDragStarted={this._itemDragStarted}

 onDragEnded={this._itemDragEnded}

/>

22-connect-more-components

<TodoListComponent

 list={this.props.list}

 editedItemId={this.props.editedItemId}

 createNewFormVisible={this.props.isCreateNewFormOpen}

 onCreateNewClick={this.props.onCreateNewClick}

/>

Middleware
One of the greatest things about Redux is its modularity

• Logging

• Complex actions (Thunk, promise)

• devTools

• …

createStore(app, initialState, applyMiddleware(...middleware));

Redux-devtools
• All your actions and state visualized

• You can replay history

• Install chrome extension

• See kentico cloud or kiwi.com

23-redux-devtools

https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en
kenticolabs-cdn-develop.azurewebsites.net
kenticolabs-cdn-develop.azurewebsites.net
kenticolabs-cdn-develop.azurewebsites.net
https://www.kiwi.com/en/

Redux-thunk
Where to handle side-effects in Redux app?

(async code (API communication), data generation like new Date() or Math.random())

• Components?

• Reducers?

• Action creators?

 “thunk” action creators

Thunk actions
“In computer programming, a thunk is a subroutine used to inject an additional calculation

into another subroutine. Thunks are primarily used to delay a calculation until it is needed, or

to insert operations at the beginning or end of the other subroutine.”

 -- Wikipedia

Function that can dispatch other actions:

export const saveItems = () =>

 (dispatch, getState) => {

 dispatch(savingStarted());

 setTimeout(() => {

 const items = JSON.stringify(getState().todoApp.itemsList.toJS());

 localStorage.setItem('todoList', items);

 dispatch(savingFinished());

 }, 1000);

 };

https://en.wikipedia.org/wiki/Thunk

Saving items to localStorage

Getting rid of Dummy TodoList container

New component

• Displays saving status

• Watches for changes in todoList part of state

• On changes dispatches a thunk action to save items

 Install redux-thunk

 Define savingStarted & savingFinished action types and creators

 Introduce reducer with saving flag

 Create SavingStatus component

 Wrap component in a container (list data & save callback)

24-autosaving-component

<SavingStatus />

Data normalization

Immutable.List<Item>

vs.

Immutable.Map<id, Item> & Immutable.List<id>

Data should be stored in a normalized form (same as in relation DB)

 Easier manipulation – reducers (entity vs collection)

 No duplication (for complex nested objects)

Data normalization
{

 itemsWithAuthors: [

 {

 id: '1',

 title: 'Buy milk',

 author: { id: '410237', name: 'Suzii' },

 },

 {

 id: '2',

 title: 'Learn Redux',

 author: { id: '410237', name: 'Suzii' },

 },

 {

 id: '3',

 title: 'Be awesome',

 author: { id: '325335', name: 'Slavo' },

 },

],

};

{

 authors: {

 byId: {

 '410237': { id: '410237', name: 'Suzii' },

 '325335': { id: '325335', name: 'Slavo' },

 },

 },

 items: {

 allIds: ['1', '2', '3'],

 byId: {

 '1': {

 id: '1',

 title: 'Buy milk',

 author: '410237',

 },

 '2': {

 id: '2',

 title: 'Learn redux',

 author: '410237',

 },

 '3': {

 id: '3',

 title: 'Be awesome',

 author: '325335',

 },

 },

 },

}

Normalizing todo list
We replace the itemsList with data structure:

24-todo-list-normalization

{

 items: {

 allIds: [], // list of ids

 byId: {}, // map of items indexed by id

 }

}

Memoization
What do we pass to TodoList container?

Two options:

• Both byId and allIds

• We create list of item in container and do not need to change the component at all

But we are creating new instance of list every time mapStateToProps is called

 ANY change in state,

 The component is ALWAYS rerendered

 MEMOIZE

25-todos-memoization

const getListOfItems = (items) => items.allIds.map(id => items.byId.get(id)).toList();

const getListOfItemsMemoized = memoizee(getListOfItems);

Unit testing
Action creators:

• Very easy to test, however, most of the times unnecessary

Thunk action creators:

• If you inject your dependencies easy to test

Reducers:

• Pure functions super-easy to test

MapStateToProps/Selectors (reselect library)

• Should be a pure function mapping data from store to another data structure easy to test

https://github.com/reactjs/reselect

Interesting libraries, concepts
Redux is widely used in the community and there are tons of other packages that work with it.

Integration with React: react-redux

React router: react-router-redux

Forms: redux-form

Computing derived data: reselect

Memoizing: memoizee

Normalizing data from server: normalizr

Middleware: redux-logger, redux-thunk

And lots more…

https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-router-redux
https://github.com/reactjs/react-router-redux
https://github.com/reactjs/react-router-redux
https://github.com/reactjs/react-router-redux
https://github.com/reactjs/react-router-redux
https://github.com/erikras/redux-form
https://github.com/erikras/redux-form
https://github.com/erikras/redux-form
https://github.com/reactjs/reselect
https://github.com/medikoo/memoizee
https://github.com/paularmstrong/normalizr
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/gaearon/redux-thunk
https://github.com/gaearon/redux-thunk
https://github.com/gaearon/redux-thunk
http://redux.js.org/docs/introduction/Ecosystem.html

Alternatives
Flux

• "It is cool that you are inventing better Flux by not doing Flux at all.“ – reduxjs.org

• More stores, dispatcher entity, action handlers

RePatch

• Redux with less boilerplate

MobX

• Functional reactive programming

Others

• There are new libraries every day

Sources
http://redux.js.org

https://css-tricks.com/learning-react-redux/

https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6

http://redux.js.org/
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6

Questions?

zuzanad@kentico.com

410237@mail.muni.cz

mailto:zuzanad@kentico.com
mailto:410237@mail.muni.cz

