
Redux

Zuzana Dankovčíková

“… predictable state container for JavaScript apps.” -- Redux docs

http://redux.js.org/

Why do we need Redux?
We have already solved many problems of state management by

• treating data as immutable objects and

• having most of the data stored in the root component.

Problem 1: What is “root component”
New feature request:

 Displaying number of TODOs next to the avatar of the logged-in user?

 “Unrelated” components dependent on the same data.

 Lifting state up. But until when? How to make it scalable?

https://facebook.github.io/react/docs/lifting-state-up.html

Problem 2: Callbacks chain

Submit

button

EditItem

component

EditItem

container

TodoList

component

TodoList

container

Problem 2: Callbacks chain
class TodoListContainer extends React.Component {

 // other methods

 // ...

 render() {

 return (

 <TodoListComponent

 list={this.state.list}

 editedItemId={this.state.editedItemId}

 createNewFormVisible={this.state.createNewFormVisible}

 isDragging={this.state.isDragging}

 onDelete={this._deleteItem}

 onExpand={this._startEditing}

 onCancel={this._cancelEditing}

 onSave={this._updateItem}

 onReorder={this._moveItem}

 onCreateNewClick={this._showCreateNewForm}

 onCreateCancel={this._hideCreateNewForm}

 onCreate={this._createNewItem}

 onDragStarted={this._itemDragStarted}

 onDragEnded={this._itemDragEnded}

 />

);

 }

}

Submit

button

EditItem

component

EditItem

container

TodoList

component

TodoList

container

Motivation
Complex state management made easy

• Scalable state management

• Deterministic and easily traceable changes

• State is decoupled from presentation (won’t break with every UI change)

• Better dev tools than console.log()

• Better testability

3 Principles of Redux

Single source of truth:

"The whole state of your app is stored in an object tree inside a single store."

State is read-only:

"The only way to change the state tree is to emit an action, an object describing what happened."

Changes are made with pure functions:

“To specify how the actions transform the state tree, you write pure reducers."

Building blocks
Action

• describes UI changes

Store

• receives action via dispatcher

• calls root reducer

Reducer

• (prevState, action) => newState

View

• gets notified about state change

• rerenders with new data

Actions & Action creators
“Actions are payloads of information that send data from your application to your store. They

are the only source of information for the store.”

A new developer can go through all defined actions and immediately see the entire API - all

user interactions that are possible in your app.

17-redux-action-creators

{

 type: 'TODO_LIST_ITEM_CREATE',

 payload: {

 id: 42,

 text: 'Buy milk'

 }

}

const createItem = (text) => ({

 type: TODO_LIST_ITEM_CREATE,

 payload: {

 id: uuid(),

 text: text

 }

});

Action creator - helper function for creating actions Action - simple JS objects describing data change

Reducers
Action describes WHAT has happened, reducer specifies HOW the state should change

• 1 root reducer that can be composed from many others

• Pure function (prevState, action) => nextState

What is a pure function? (args) => result

• It does not make outside network or database calls.

• Its return value depends solely on the values of its parameters.

• Its arguments should be considered "immutable" (must not be changed)

• Calling a pure function with the same set of arguments will always return the same value.

Pure or impure?

var count = 0;

cosnt increaseCount = (val) => count += val;

const time = () => new Date().toLocaleTimeString();

const addFive = (val) => val + 5;

const getMagicNumber = () => Math.random();

Reducers

Previous state argument

• Specify default value

• Return same reference

for irrelevant action type

18-redux-reducers

function counter(state = 0, action) {

 switch (action.type) {

 case 'INCREMENT':

 return state + 1;

 case 'DECREMENT':

 return state - 1;

 default:

 return state;

 }

}

Reducer composition

18-redux-reducers

Store
Single store for whole app managed by Redux (we only provide a root reducer)

• Holds application state;

• Allows access to state via getState();

• Allows state to be updated via dispatch(action);

• Registers listeners via subscribe(listener);

• Handles unregistering of listeners via the function returned by subscribe(listener).

-- Redux docs

http://redux.js.org/docs/basics/Store.html

Minimalistic API

• createStore(rootReducer)

• store.getState()

• store.dispatch(action)

• store.subscribe(listener)

• combineReducers({…})

• What is the store lifecycle?

 initial call to reducer + call on every dispatched action

19-install-redux

React-redux integration

You can connect your existing app to the store by hand.

But you would loose many optimizations react-redux package

brings.

Use react-redux library instead:

1. Wrap your root component in <Provider>

2. Connect components to redux store

• connect(mapStateToProps, mapDispatchToProps)(Component)

20-connect-root-component

https://github.com/reactjs/react-redux/blob/master/docs/api.md
https://github.com/reactjs/react-redux/blob/master/docs/api.md
https://github.com/reactjs/react-redux/blob/master/docs/api.md

Moving more state to the Redux store
All state from the root component shall be moved to the store

• New actions,

• New reducers

• No internal state in TodoList.jsx

 the old container is basically useless

21-move-state-to-store

Be declarative

const editedItemId = (state = null, action) => {

 switch(action.type) {

 case TODO_LIST_ITEM_START_EDITING:

 return action.payload.id;

 case TODO_LIST_ITEM_CANCEL_EDITING:

 case TODO_LIST_ITEM_UPDATE:

 case TODO_LIST_ITEM_DELETE:

 return null;

 default:

 return null;

 }

};

Action describes what has happened, reducer decides how to react

dispatch({

 type: 'SET_EDITED_ITEM_ID',

 payload: {

 id: 42

 }

});

dispatch({

 type: 'CLEAR_EDITED_ITEM_ID'

});

Should all components be stateless?
“How much” state should we move to the redux store?

Does your state influence more components in your application?

 (and the common parent is way up in the hierarchy)

 move state to redux store

 TodoList.jsx

Is the state well encapsulated and local for the component?

 It can stay in the stateful component.

 TodoListEditedItem.jsx

Benefits
State described as plain object and arrays:
• Inject initial state during server rendering
• Persist to and load from localStorage
• UI is function of state (state -> UI -> deterministic behavior)
• Immutability (React performance)

State changes described as plain objects
• Replaying the history (reproducing bugs)
• Pass actions over network in collaborative environments (google docs, trello live updates)
• Implementing undo
• Awesome tooling

State modification as pure functions
• Testability
• Hot reloading

3rd party modules integration (middleware, libs that need to store state...)

Drawbacks
• Boilerplate & Verbosity

-> have a look at Repatch

• "One huge object"

-> pretty much eliminated by reducer composition and ImmutableJS

• "Component state vs Redux store" dilema

-> see #1287 and: "Do whatever is less akward."

https://hackernoon.com/repatch-the-simplified-redux-2c4aa5c25fa9
https://hackernoon.com/repatch-the-simplified-redux-2c4aa5c25fa9
https://hackernoon.com/repatch-the-simplified-redux-2c4aa5c25fa9
https://github.com/reactjs/redux/issues/1287

3 Principles of Redux - revised

Single source of truth:

"The whole state of your app is stored in an object tree inside a single store."

State is read-only:

"The only way to change the state tree is to emit an action, an object describing what happened."

Changes are made with pure functions:

“To specify how the actions transform the state tree, you write pure reducers."

Part 2

What about our props explosion?

<TodoListComponent

 list={this.state.list}

 editedItemId={this.state.editedItemId}

 createNewFormVisible={this.state.createNewFormVisible}

 isDragging={this.state.isDragging}

 onDelete={this._deleteItem}

 onExpand={this._startEditing}

 onCancel={this._cancelEditing}

 onSave={this._updateItem}

 onReorder={this._moveItem}

 onCreateNewClick={this._showCreateNewForm}a

 onCreateCancel={this._hideCreateNewForm}

 onCreate={this._createNewItem}

 onDragStarted={this._itemDragStarted}

 onDragEnded={this._itemDragEnded}

/>

<TodoListComponent

 list={this.props.list}

 editedItemId={this.props.editedItemId}

 createNewFormVisible={this.props.isCreateNewFormOpen}

 isDragging={this.props.isDragging}

 onDelete={this.props.onDelete}

 onExpand={this.props.onStartEditing}

 onCancel={this.props.onCancelEditing}

 onSave={this.props.onUpdate}

 onReorder={this.props.onMove}

 onCreateNewClick={this.props.onCreateNewClick}

 onCreateCancel={this.props.onCreateNewCancel}

 onCreate={this.props.onCreateNew}

 onDragStarted={this.props.onDragStarted}

 onDragEnded={this.props.onDragEnded}

/>

Connecting more components

Connecting more components to store

<TodoListComponent

 list={this.state.list}

 editedItemId={this.state.editedItemId}

 createNewFormVisible={this.state.createNewFormVisible}

 isDragging={this.state.isDragging}

 onDelete={this._deleteItem}

 onExpand={this._startEditing}

 onCancel={this._cancelEditing}

 onSave={this._updateItem}

 onReorder={this._moveItem}

 onCreateNewClick={this._showCreateNewForm}a

 onCreateCancel={this._hideCreateNewForm}

 onCreate={this._createNewItem}

 onDragStarted={this._itemDragStarted}

 onDragEnded={this._itemDragEnded}

/>

22-connect-more-components

<TodoListComponent

 list={this.props.list}

 editedItemId={this.props.editedItemId}

 createNewFormVisible={this.props.isCreateNewFormOpen}

 onCreateNewClick={this.props.onCreateNewClick}

/>

Middleware
One of the greatest things about Redux is its modularity

• Logging

• Complex actions (Thunk, promise)

• devTools

• …

createStore(app, initialState, applyMiddleware(...middleware));

Redux-devtools
• All your actions and state visualized

• You can replay history

• Install chrome extension

• See kentico cloud or kiwi.com

23-redux-devtools

https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en
kenticolabs-cdn-develop.azurewebsites.net
kenticolabs-cdn-develop.azurewebsites.net
kenticolabs-cdn-develop.azurewebsites.net
https://www.kiwi.com/en/

Redux-thunk
Where to handle side-effects in Redux app?

(async code (API communication), data generation like new Date() or Math.random())

• Components?

• Reducers?

• Action creators?

 “thunk” action creators

Thunk actions
“In computer programming, a thunk is a subroutine used to inject an additional calculation

into another subroutine. Thunks are primarily used to delay a calculation until it is needed, or

to insert operations at the beginning or end of the other subroutine.”

 -- Wikipedia

Function that can dispatch other actions:

export const saveItems = () =>

 (dispatch, getState) => {

 dispatch(savingStarted());

 setTimeout(() => {

 const items = JSON.stringify(getState().todoApp.itemsList.toJS());

 localStorage.setItem('todoList', items);

 dispatch(savingFinished());

 }, 1000);

 };

https://en.wikipedia.org/wiki/Thunk

Saving items to localStorage

Getting rid of Dummy TodoList container

New component

• Displays saving status

• Watches for changes in todoList part of state

• On changes dispatches a thunk action to save items

 Install redux-thunk

 Define savingStarted & savingFinished action types and creators

 Introduce reducer with saving flag

 Create SavingStatus component

 Wrap component in a container (list data & save callback)

24-autosaving-component

<SavingStatus />

Data normalization

Immutable.List<Item>

vs.

Immutable.Map<id, Item> & Immutable.List<id>

Data should be stored in a normalized form (same as in relation DB)

 Easier manipulation – reducers (entity vs collection)

 No duplication (for complex nested objects)

Data normalization
{

 itemsWithAuthors: [

 {

 id: '1',

 title: 'Buy milk',

 author: { id: '410237', name: 'Suzii' },

 },

 {

 id: '2',

 title: 'Learn Redux',

 author: { id: '410237', name: 'Suzii' },

 },

 {

 id: '3',

 title: 'Be awesome',

 author: { id: '325335', name: 'Slavo' },

 },

],

};

{

 authors: {

 byId: {

 '410237': { id: '410237', name: 'Suzii' },

 '325335': { id: '325335', name: 'Slavo' },

 },

 },

 items: {

 allIds: ['1', '2', '3'],

 byId: {

 '1': {

 id: '1',

 title: 'Buy milk',

 author: '410237',

 },

 '2': {

 id: '2',

 title: 'Learn redux',

 author: '410237',

 },

 '3': {

 id: '3',

 title: 'Be awesome',

 author: '325335',

 },

 },

 },

}

Normalizing todo list
We replace the itemsList with data structure:

24-todo-list-normalization

{

 items: {

 allIds: [], // list of ids

 byId: {}, // map of items indexed by id

 }

}

Memoization
What do we pass to TodoList container?

Two options:

• Both byId and allIds

• We create list of item in container and do not need to change the component at all

But we are creating new instance of list every time mapStateToProps is called

 ANY change in state,

 The component is ALWAYS rerendered

 MEMOIZE

25-todos-memoization

const getListOfItems = (items) => items.allIds.map(id => items.byId.get(id)).toList();

const getListOfItemsMemoized = memoizee(getListOfItems);

Unit testing
Action creators:

• Very easy to test, however, most of the times unnecessary

Thunk action creators:

• If you inject your dependencies  easy to test

Reducers:

• Pure functions  super-easy to test

MapStateToProps/Selectors (reselect library)

• Should be a pure function mapping data from store to another data structure  easy to test

https://github.com/reactjs/reselect

Interesting libraries, concepts
Redux is widely used in the community and there are tons of other packages that work with it.

Integration with React: react-redux

React router: react-router-redux

Forms: redux-form

Computing derived data: reselect

Memoizing: memoizee

Normalizing data from server: normalizr

Middleware: redux-logger, redux-thunk

And lots more…

https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux
https://github.com/reactjs/react-router-redux
https://github.com/reactjs/react-router-redux
https://github.com/reactjs/react-router-redux
https://github.com/reactjs/react-router-redux
https://github.com/reactjs/react-router-redux
https://github.com/erikras/redux-form
https://github.com/erikras/redux-form
https://github.com/erikras/redux-form
https://github.com/reactjs/reselect
https://github.com/medikoo/memoizee
https://github.com/paularmstrong/normalizr
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/gaearon/redux-thunk
https://github.com/gaearon/redux-thunk
https://github.com/gaearon/redux-thunk
http://redux.js.org/docs/introduction/Ecosystem.html

Alternatives
Flux

• "It is cool that you are inventing better Flux by not doing Flux at all.“ – reduxjs.org

• More stores, dispatcher entity, action handlers

RePatch

• Redux with less boilerplate

MobX

• Functional reactive programming

Others

• There are new libraries every day

Sources
http://redux.js.org

https://css-tricks.com/learning-react-redux/

https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6

http://redux.js.org/
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6

Questions?

zuzanad@kentico.com

410237@mail.muni.cz

mailto:zuzanad@kentico.com
mailto:410237@mail.muni.cz

