Programming Ruby

Marek Hulan, Marek Jelen, Ivan Necas

Version 0.2, September 25, 2017

Table of Contents

Ruby basics
1. Instalation
1.1. Linux
1.2. Windows
1.3. macOS
2. Running Ruby
2.1. Interactive Ruby
3. About Ruby
3.1. Interpreted
3.2. Universal
3.3. Fully Object oriented
3.4. Everything is an expression
3.5. Atomic memory management
3.6. MRI
3.7. Strongly typed
3.8. Dynamically typed
3.9. What is written in Ruby?
4. Conventions
5. Basic syntax
5.1. Operator priority
5.2. Special characters in method names
5.3. Comments
6. Data types
6.1. Strings
6.2. Numbers
6.3. Empty value
6.4. Booleans
6.5. Arrays
6.6. Hashes
6.7. Symbols
7. Objects and methods
8. Variables
9. Conditions
10. Logical operators
11. Regular expressions
12. Loops
13. Methods
14. Reusing code from other files

© © © © © 3 I I 0 O U bl R R R R R R W W NN NN R

e Y
© 0 9 o U1 W N, O O O

15.
16.
17.
18.
19.
20.
21.
22.

Blocks

Objects

Inheritance

Class methods and attributes
Modules

Method access

Duck typing

Exceptions

Advanced Ruby

23
24
25

26

27

. Return values

. Context

. Class

25.1. Open classes

25.2. What is a class?

25.3. Inheritance

25.4. Mixins

25.5. Class introspections

. Methods

26.1. Extracting methods

26.2. Checking method existence
26.3. Dynamic method calling
26.4. Defining methods programmatically
26.5. Missing methods

. Objects

27.1. Creating new object

27.2. Defining methods

27.3. Eigenclass

27.4. Method lookups

Testing

28
29

. Testing frameworks

. Minitest

29.1. Testunit syntax

29.2. Assertions

29.3. Spec syntax

29.4. Output of test run

29.5. Running multiple test files
29.6. Test coverage

29.7. Stubbing

29.8. Mocking

29.9. Stubbing network calls
29.10. Testing web applications

20
22
23
24
25
26
27
28
29
30
31
32
32
32
33
33
34
35
35
35
36
37
38
39
39
39
40
42
45
46
47
47
47
48
49
49
50
50
51
52
53

Standard library & libraries 56
30. FIles. . oo 57
Ruby on Rails. 58

31. INtrodUCION oo 59

Ruby basics

Get started with Ruby

Chapter 1. Instalation

1.1. Linux
Q Do not use prepackaged Ruby on Linux distributions.

On Linux use rbenv package manager with the ruby-build extension to install Ruby.

1.2. Windows

For windows there is an installer Ruby Installer simplifies the installation to the "windows standard
approach”.

1.3. macOS

The simplest way to install Ruby on macOS is to use homebrew package manager

$ brew install ruby

in case there is a need to have multiple installations rbenv is a good tool to use. Another popular tool
is called rvm but nowadays they do too much magic and we recommend using rbenv instead.

https://github.com/rbenv/rbenv
https://github.com/rbenv/ruby-build
https://rubyinstaller.org/downloads/
https://github.com/rbenv/rbenv

Chapter 2. Running Ruby

Q Usually you put ruby and relates command on PATH so you do not need to always
specify the whole path to the executable. With tools like rbenv this is done for you.

$ ruby -v
runs Ruby and prints it’s version. Simplest way to verify that your instalation works as expected.
$ ruby script.rb

interprets the script.rb. However instead of running the script explicitly, you can add the shebang
line to your script

#!/usr/bin/env ruby
and make it executable (chmox +x script.rb) and run it simply as ./script.rb.

2.1. Interactive Ruby

Ruby comes with an interactive interpreter called irb it allows you to enter commands and see
results instantly.

$ irb

Chapter 3. About Ruby

Ruby a programming language with following aspects

3.1. Interpreted

The Ruby code is interpreted when the script is load, there is no compile phase.

3.2. Universal

Ruby can be used for writing scripts, one-liners, web applications and even for mobile and desktop
applications.

3.3. Fully Object oriented

In Ruby everything is an object and you send messages to those objects.

3.4. Everything is an expression

Everything command in Ruby has a return value.
3.5. Atomic memory management

3.6. MRI

MRI is the Ruby reference implementation, with several other implementations like JRuby, Rubinius,
IronRuby or MaglLev. As well, there is ISO standard implemented in mruby.

3.7. Strongly typed

There are some implicit conversions (e.g. every object has to_s method to provide string
representation) but in most cases in case you try to operate on different types Ruby will complain,
unless such operation is explicitly provided.

5+ "3a" # => TypeError: String can't be coerced into Fixnum

3.8. Dynamically typed

The type of a variable is defined by the value assigned to that variable. There is no explicit type
information in the code.

a = "string"

3.9. What is written in Ruby?

programming languages: Ruby (Rubinius), compilers (Less]S)
web applications: Github, Gitlab, Redmine, BaseCamp
devops tools: Puppet/Chef/Vagrant

cloud platforms: OpenShift (v2)

cloud management: Foreman, ManagelQ

VIM/Emacs scripts

static pages generators - Jekyll

programming tools

Chapter 4. Conventions

* class names are CamelCase

« file names reflect class names in snake_case format
« method names are snake case

¢ constants are UPPER_CASE

* indent by 2 spaces

* methods returning boolean values end with ?

* methods mutating state end with !

Chapter 5. Basic syntax

Basic and most explicit syntax looks like
puts("hello world!");

However the parenthesis are optional in case the only one interpretation of the expression
puts "hello world!";

and semicolons are optional as well
puts "hello world!"

String use either quotation marks " or apostrophes
substitution as quotations marks do.

. Apostrophes does not provide string

a = 'Hello' # => "Hello"
"#{a} world" # => "Hello world"
"#{a} world' # => "\#{a} world"

o O
11 I

5.1. Operator priority

5.2. Special characters in method names

Ruby allows usage of special characted in method names. The standard is to use

* the question mark ? for methods that return boolean value

* the exclamation mark ! for methods that mutate the object

1.even? #t => false
"ruby".upcase.reverse f => 'YBUR'
"ruby".size.even? # => true

5.3. Comments

In the code above the single line comment is used. It starts with hash # and follows to the end of the
line. In case of commenting multiple lines, it is customary to comment every line with single line
comment.

Chapter 6. Data types

As mentioned above in Ruby everything is an object, including arrays or numbers. However there
are special syntax shorthands to create instances of special classes.

6.1. Strings

As mentioned above String are create by quoting the charachters

"string"
'string’

o o
I

6.2. Numbers

Ruby has two basic number classes Fixnum and Float.

a =1 #=>1
a.class # => Fixnum

b=1.14#=> 1.1
b.class # => Float

6.3. Empty value

Special value that represents "nothing" is nil.
a=nil# = nil

In a boolean expression, nil is considered false, i.e. it’s only of two possible values that are not
considered true.

6.4. Booleans

As usual there is either true or false.

= true # => true
= false # => false
&& b # => false
|| b # => true

QU oo O o

6.5. Arrays

Arrays is an ordered sequence of values. There are no restrictions on what types can be in a single
array.

["a", 1, true] # => ["a", 1, true]

6.6. Hashes

Hash is a structure that maps key to a value.
{"a" => true, "b": false} # => {"a"=>true, :b=>false}

There are two approaches how to write the mapping, either rocket style
key => value

or json style
key: value

You can use both syntaxes, however with the json style the value is converted to symbol, so in case
you need to use String or some other type, or get the name of the key from a variable, you need to
use the rocket style. Several well-known coding guidelines recommend (and enforce) using rockets
everywhere.

6.7. Symbols

Symbol is a keyword. It always maps to the same object instance

a = |lall # :> HaH
b = |Iall # :> HaH

a.object_id # => 70224766839340
b.object_id # => 70224750415480

ta #f => :a
a # => :a

o o
1 1

a.object_id # => 722268
b.object_id # => 722268

10

Chapter 7. Objects and methods

Methods are called by using the .. Operators are actually methods.

3+43 #=>0
3.+(3) # => 0

)

[1,2][0] #=> 1
[1,2].[1(0) # => 1

11

Chapter 8. Variables

Ruby has global variables prefixed by §.

$stdout

Classes and object can use class variables, though there are not used very much. Prefer
@instance_variables in class-level methods, as they have more predicatable behavior.

@@class variables = 1

Objects have instance variables.
@instance variable = 1

Local variables have no prefix.
local_variable = 1

And finally constants are all upper case.

CONSTANT = 1

12

Chapter 9. Conditions

Everything is considered true except false and nil.

a = nil
T
if a

"we do not get in here"
elsif b

"we got here"
else

"we did not get here"
end

Ruby has negative variant to if called unless. Essentially unless bool_expr is equivalent to if
I(bool_expr). It is used the same way as normal if.

a =nil
b= "
unless a

"we do get in here"
elsif b

"we did not get here"
else

"we did not get here"
end

Ruby has inline method of using conditionals called modifier statements.

puts "Hello" if true
puts "Hello" unless false

Ternary operator is available as well.

experssion ? 'was evaluated true' : 'was evaluated false'

Another way to do conditions is to use case statement.

13

case input
when 'q', ‘e’
quit
when 'f'
format
else
help
end

Case statement can as well check on variable class.

case var
when String
"it's string"
when (Class
"it's class”
when Number
"it's number"
end

Another way to use case statement is to use it as if and elsif.

case
when a == "a"
"a equals a"
when b == "b"
"b equals b"

end

14

Chapter 10. Logical operators

There are basic logical expressions

e and &&
e or ||

* not !
as well && can be replaced with and, || can be replaced with or and ! can be replaced with not.
There are basic comparison operators

* equal ==

* not equal !=

* lesser then <

* greater then >

* lesser then or equal <

* greater then or equal >=

* regular expression match =~

15

Chapter 11. Regular expressions

Regular expressions are enclosed with /. The simplest way is to use the regexp operator.

string = 'localhost:2000'
string =~ /.*:.+/ # 0
string =~ /(.)*:(.)+/ # sets §1 3 §$2

as well there is a match method on string.

data = string.match(/A(.):(\d+)$/)
data[1] # => localhost
data[2] # => 2000

16

Chapter 12. Loops

while repeats as long as the condition is true.

while a < b
a +=1
end

To go through the body of the loop at least once

begin
a +=1
end while a < b

There is as well inline way to write the loop
a+=1whilea<b
And finally the negative counterpart until

until a > b
a += 1
end

17

Chapter 13. Methods

Methods in Ruby always return some value. If it is not explicitly returned using the return keyword,
the return value is the value of the last expression in the method. Return as usual returns from
method and ends the execution of the method.

Simple method with two arguments
def mth(a, b)
end

Method with default value for 2nd argument
def mth(a, b=1)
end

Method accepting any number of arquments, available as Array args
def mth(*args)
end

Method requiring at least two arguments

def mth(a, b, *args)
end

18

Chapter 14. Reusing code from other files

The require method loads code from another file. Ruby keeps track of required files and skips
loading files that would be loaded 2nd time. Files are looked up using Ruby’s load path, which is
represented using an array in $L0AD_PATH and $:. The load method does not keep track of loaded
files.

In case the required file ends with [rb, so, o, dll, bundle, jar] extension, the extension may be
omitted. There two commands are equivalent

require "somefile"
require "somefile.rb"

To keep track of required files, Ruby keep list of all files that were required in the $" variable.

19

Chapter 15. Blocks

Blocks have many uses-cases. One of the use cases is the replacement for for cycles another use
case is anonnymous functions. Block are not executed when defined, but have to be called through
the call method (though the calling of call method is most of the times hidden from the develop as
in the examples below).

Arrays have method called each that accepts block and calls the block for every single element in

the array.

arr = [1,2,3,4]

arr.each do |el|
puts el

end

will print all four values to the standard output. Blocks can be written in one more way

arr = [1,2,3,4]
arr.each { |el| puts el }

this variant is usually used for single-line blocks.
Block see their own scope plus can access scope in which were defined.
sum = 0

arr = [1,2,3,4]
arr.each { |el| sum += el }

Any method can accept a block and call it

def mth
return nil unless block_given?
yield

end

This method will return nil if no block was given or will call the block without any argument and
the return value of the block will be return from the method.

Method may also accept blocks as a named argument which is prefixed by &.

def mth(num, &block)
block.call(num)
end

20

this method will call block saved in the variable block and will pass one argument which is the first
argument passed to the method itself.

21

Chapter 16. Objects

In Ruby everything is an object. Object is an instance of some class. Even every class is an instance
of class that inherits from Class. Object can have methods

class Hello
def say
"Hello, world!"

end
end

puts Hello.new.say
and instance variables

class Hello
def initialize(msg=nil)
@msg = msg
end

def say
@msg
end
end

puts Hello.new("Hello, world!").say

To make your instance variables accessible from outside, you define them as attributes. Attributes
can be either read-only, write-only or both.

class Hello

attr_reader :one # allows reading by using the .one method
attr_writer :two # allows writing by using the .two = "xy" method
attr_accessor :three # allows both, reading and writing

end

22

Chapter 17. Inheritance

Ruby allows object inheritance. All methods including constructor are inherited. Methods can be
overridden by children. super is then used to call the original method.

class A
def a
"hello"
end
end

puts A.new.a # => hello

class B < A
end

puts B.new.a # => hello
class C < A
def a
super + " world"
end

end

puts C.new.a # => hello world

23

Chapter 18. Class methods and attributes

As known from other language, except in Ruby class variables are not used because of some pitfalls
in their inheritance.

class A
def self.a
"hello"
end
end

puts A.a # => hello

24

Chapter 19. Modules

Modules are a way to organize your classes in a similar fashion to namespaces. Classes can be
included into modules or into other classes.

class A
class B
end

end

module Some
class Thing
end

end

Module are however used as well as mixins. When module is included into class all methods
defined for that module are available in the class as instance methods.

module Helper
def something
end

end

class A
include Helper

end

A.new.something
and when used with extend the mehtods are included as class methods

module Helper
def something
end

end

class A
extend Helper

end

A.something

Ruby has only single inheritance, mixins allow to get around this and provide a way to get some
kind of multiple inheritance.

25

Chapter 20. Method access

By default methods are public, explicitly methods can be made protected or private.

class A
def public_method
end

protected

def protected_method
end

private
def private_method

end
end

26

Chapter 21. Duck typing

Ruby encourages to react based on behaviour rather then on identity.

class Hunter
def shoot(animal)
bang! if animal.class == Duck
end
end

in this case the code checks if it’s a duck and shoots it, however

class Hunter
def shoot(animal)
animal.respond_to?(:quack) && bang!
end
end

in this case we care if the animal quacks and the it’s shot.

27

Chapter 22. Exceptions

Exceptions represnt a special state in the execution in a program. When an exception is raised, it
will bubling thorugh the stack until is caught.

Exceptions are raised using the raise keyword

raise "This is not expected"

On the other hand when an exception needs to be caught, code block is extended with rescue
statement that is called when an exception is caught and optionally ensure that is called after both
exceptional and non-exceptional state. Unless an exception class is specified explicitly after the
rescue keyword, the StandardError class and it’s ancestors are rescued.

begin
raise "This is not expected"
rescue => e
puts e.message
ensure
puts "always"
end

Don’t inherit directly from Exception class but use StandardError instead. The direct
descendants of Exception are usually exceptions one doesn’t want to rescue from,
such as SystemExit or NoMemoryError.

28

Advanced Ruby

Meta-programming, DSLs, etc.

29

Chapter 23. Return values

In Ruby everything is an expression - it executes and returns some value, the result of it’s
execution. Let’s take a look at a simple example

5+ 2 #t=> 7
"hello" # => "hello"

"a" if true # => "3
"3a" if false # => nil

class A; end # => 777

What is the result of the last expression? It could be obvious - "we defined class A". But not really.
The fact we have defined a class is only an effect of the expression but not the result, result is a
value returned from the expression itself.

class A; end # => nil

The result is simply nil. It’s similar to the expression "a" if false above. The condition is evaluated
as false and there is no else so there is nothing to return, so the result is nil. In this case a class was
defined, but there was nothing to be return, as the body of the class was empty, so the result is nil.
Let’s modify the example to return a value

class A; 1; end =1
class A; 1; "hello"; end # => "hello"
class A; self; end ff=> A

Before it was said that the return value of a method is the result of it’s last expression. And it’s
obvious that in this example it’s very similar, and it can be generalized for all structures, even
though sometimes it may not be obvious on the first sight.

the return value is the the result of the last expression

30

Chapter 24. Context

In Ruby everything is executed in some context. This context is know as current object and is

always represented by self.

self.class # => Object

class B
self

end

=> (Class

class A
def call
self
end
end

A.new.call # => #<A:some number>

31

Chapter 25. Class

25.1. Open classes
Unlike most languages, Ruby classes are open for modifications. Developers can modify behavior of

classes defined by frameworks or Ruby itself. This technique is called Monkey patching.

class Clazz
def call
llAll
end
end

class Clazz
def call
|IBII
end
end

Clazz.new.call # => "B"

25.2. What is a class?
Let’s start with a definition

classes are instances of class Class

and as mentioned many times before, everything in Ruby is an object ... even a class.

32

class A
def self.call
llAll
end
end

B = (Class.new

def B.call
"called"
end
A.call # => "called"
B.call # => "called"

A.object_id # => [some number]
B.object_id # => [some number]

A.class # => (Class
B.class # => (lass

Class A was defined using the class keyword and then a class method was defined. Class B was
created by creating new instance of the (Class class and the object was assigned to constant B. As
both of those classes are objects, it’s possible to check it’s class and the ID of the object.

25.3. Inheritance

In Ruby classes can inherit from each other, though Ruby has only single-class inheritance - it’s not
possible to inherit from multiple classes, only from one.

class A
def call
"called"
end
end

class B < A
end

C = Class.new(B)

B.new.call # => "called"
C.new.call # => "called"

25.4. Mixins

When some class needs to inherit from multiple classes, it’s not possible, but Ruby provides a

33

workaround through mixins. It is possible to include many Modules into a class the methods
defined in those modules will become part of the lookup path as if they were defined in the class.

module Methods
def call
"called"
end
end

class A
include Methods

end

A.new.call # => "called"

25.5. Class introspections

Ruby allows many introspections on classes and many other objects.

There is method name defined on a class that returns the name of the current class.

Array.name # => "Array"

[].class.name # => "Array"
It’s possible to list methods of an object

class A
def call
end

end

A.new.methods # => array of methods

34

Chapter 26. Methods

As everything else in Ruby even methods are instances of class Method.

26.1. Extracting methods

Sometimes it is useful to pass around only a method instead of the whole object. Ruby allows
extraction of a method for later usege.

class A
def call(argl)
self
end
end

meth = A.new.method(:call) # => #<Method: Aficall>

In the example method call from class A was "extracted". The method is still bound to the instance
of class A and the method will be evaluated in the context of the object (self will be the instance).
The method can be executed by calling the call method with appropriate arguments.

meth.call("some string") # => f#i<A:some_number>

26.2. Checking method existence

Because Ruby is a very dynamic language, it’s not possible to know in advance what kind of
arguments will be received. In most cases the developer should not care what class the argument is,
but whether the argument responds to a method.

Do not care what the object is, only care whether it behaves as expected.
This technique is called Duck typing.

class A
def call
end

end

a = A.new

a.respond_to?(:call) # => true
a.respond_to?(:wtf) # => false

35

26.3. Dynamic method calling

Let’s define a class with a method, create an instance and call the method.

class A
def call
end

end

A.new.call

The method is called, but the develeoper had to know the name of the method beforehand ... in the
time the code is written. What if the method name is not known and there has to be some method
called. Do not be surprised, this is very common use-case in Ruby.

class A
def call(argl)
end

end

a = A.new

a.call("some string")
a.send(:call, "some string")

Well, not so identical. When you use the send method on an object, you effectively bypass the access
modifiers.

Ruby has three access levels public is default, protected and private.

36

class A

def public_method
end

protected

def protected_method
end

private

def private_method
end

end
a = A.new
a.public_method # => nil

a.protected_method # => NoMethodError: protected method ‘protected_method' called ...
a.private_method # => NoMethodError: private method ‘private_method' called ...

a.send(:public_method) #=>nil
a.send(:protected_method) # => nil
a.send(:private_method) #=>nil

26.4. Defining methods programmatically

The way to define methods using the def keyword shown before is not the only one. It’s also
possible to define method in a more dynamic way. It makes sense. We can inspect methods of an
object, we can extract methods of an object and also call methods of an object in a dynamic way. To
dynamically define a method use the define_method method of a class, however

(lass.define_method is private

To get around this obstacle, it’s possible to use the send method and bypass the access modifier.

37

class A
end

a = A.new

logic = Proc.new do
"data"
end

A.send(:define_method, :some_method_name, logic)

a.some_method name # => "data"

26.5. Missing methods

Every object can define special method_missing method that is called whenever there is a call to
undefined method on that object.

class A
def method_missing(name, *args, &block)
puts "method #{name} called with args #{args.inspect}"
end
end

" n

A.new.something("a") # => method something called with args ["3"]

38

Chapter 27. Objects

Objects complement classes in a way that
objects define state and classes define behavior

Behavior id defined as a class, then an object is created for that class to hold the state. Every object
has to be of some class.

27.1. Creating new object

To create an object of a class there is the new method on respective class.

class Dog
end
dog = Dog.new

27.2. Defining methods

In the example above many methods were defined in simple or more fancy styles. But let’s get back
to the core and try to define a method

class A
def call
end

end

here we use def keyword to define method call. Where will def define the method? The answer is
simple and complex

def defines methods into the nearest class

So in the previous example the nearest class is A. That is obvious from next example where the
current context is returned and inspected

var = class A; self; end

var.class # => (lass
var.name # => "A"

OK, so the the current context is a Class and thus is’t obvious that the nearest class is this class. Now

39

let’s try to define a class method

class A
def self.call
"string"
end
end

Where will Ruby define the method now?? It is a bit more complicated. To understand this, we have
to explain something else first.

27.3. Eigenclass

To understand how Ruby works, we have to understand what eigenclasses are. Let’s start with
simple definition

every object in Ruby has it's own eigenclass => an instance of (lass

o eigen means "it’s own" in German

Why is this important? Because, however the eigenclasses are basically invisible to developers,
they take an important part in method lookups.

When Ruby is trying to look up a method, it follows a basic chain (will be described a bit later).
Important is, that before the class the object is linked to, there is the one more class - object’s
eigenclass. Every single object in Ruby has it’s own eigenclass and because Classes are object as
well, eigenclasses has their own eigenclasses as well.

The closest class to an object is not it's class but it's eigenclass.
Back to the example we were talking about

class A
def self.call
"string"
end
end

to see it more clearly we can rewrite this example identically as

40

class A
end

def A.call
"string"
end

these two expressions are identical. To understand why it is important to understand this

class A
end

scope = class A
self
end

A == scope # => true

but back to the original question ... where is the method going to be defined? In the context of the
instance of the class A. The important part is the instance of. What is the closest class to an
instance (object)? As stated above it’s its eigenclass. Now you might have guessed that from
implementation point of view

there are no class methods in Ruby

What would be called a class method is only an instance method defined on the eigenclass
associated with object representing the class.

So eigenclass is some stealth object that we can not see? Not really. Ruby has ways to access
eigenclasses

eigenclass = class << some_object
self
end

eigenclass = some_object.singleton_class

now that we can access eigenclasses, let’s see how we could define "class methods" (instance
methods in the eigenclass).

41

class A
def self.call
"called"
end
end

class B
class << self
def call
"called"
end
end
end

D = Class.new
class << D
def call
"called"
end
end

all those examples are identical.

27.4. Method lookups

Now that you know where and how are methods defined, lets see how methods are looked up. Let’s
see how the class hierarchy looks for class

Some(Class -> (Class -> Module -> Object -> BasicObject
and for objects
object -> SomeClass -> Object -> BasicObject

though in real it is a bit more complex as seen in this picture

42

Eigenclasses are not visible as classes of objects.

43

o1 = Object.new
def ol.meth
"string"

end

ol.meth # => "string"
ol.class # => Object

02 = Object.new

02.meth # => undefined method ‘meth’
02.class # => Object

This example shows that having two instances of same objects. Both can behave differently.
Because in the case of 01 the method is stored in the eigenclass, that is not accessible by 02.

Eigenclasses are used when a specific behavior of an object is expected.

44

Testing

Writing automated tests for the code is essential. Ruby community emphasizes it and most of
projects are well covered. A TDD is also popular among rubyist.

45

Chapter 28. Testing frameworks

Today de facto standard is to use Minitest testing framework. You can see RSpec being still used too
but Minitest already offers the capabilities and more. Both can be easily used for TDD. For BDD
there’s popular ecosystem called Cucumber which started as Ruby gem but quickly evolved into

polyglot tool.

46

https://github.com/seattlerb/minitest
http://rspec.info/
https://cucumber.io/

Chapter 29. Minitest

A syntax you can see in tests can be in two forms. Either something we call testunit (aka junit) and
spec that was taken from Rspec. The internal implementaion is the same for both and it’s mostly
matter of taste. However tests are regular ruby scripts that test other scripts. Test are usually to be
found at test/ directory, file name should reflect test class defined inside, e.g. morse_coder_test.rb.

Example output of
29.1. Testunit syntax

require 'minitest/autorun’
require 'morse_coder.rb’

class MorseCoderTest < Minitest::Test
def setup
@coder = MorseCoder.new(...)
end

def test_encode_for_single_letters

assert_equal ".-", @coder.encode "a"
assert_equal "-...", @coder.encode "b"
end

end

Test class should inherit from Minitest::Test so test helpers (assertions) are available. Testing
methods must start with "test_". Other methods are regular methods that can be used from testing
methods, e.g. to build some fixtures.

There are few method names with special meaning. In the example you can see method with name
setup. This method gets automatically executed before every testing method. Similarly there’s
teardown method that get’s executed after each testing method. It’s usually used for cleaning up
mess the testing method created.

29.2. Assertions

One testing method can contain more than one assertion. First assertion failure stops the method
run and mark the test as failure (F). If method raises an exception the result of test is marked as
error (E). If all assertions defined in method passes, test succeeds (.). If you plan to implement the
test later you can skip the test by calling skip("Sorry, I'm lazy").

The simplest assertion is to test boolean value like this
assert @something

This will succeed if @something is considered true, fail otherwise. The negative form is refute, e.g.

47

following would pass.

refute false

You could obvisouly add tests like assert @something == 'that I expect' but it would generate very
generic messages on failures. You can specify custome message by passing extra argument like this

assert @something == 'that I expect', '@something does not match expected string’

but it’s always better to use assert helper that matches the use-case best. Following example
demonstrates how to check equality of two values, the failure message would automatically include
information about what’s it @something and what was expected it to be.

assert_equal @something, 'that I expect'

Useful assert helpers are listed in example below. All of them can be found in Minitest
documentation.

assert arg # arg is true

refute arg # arg is false
assert_equal expected, actual
assert_includes collection, object
assert_kind_of class, object
assert_nil object

assert_match expected, actual
assert_raises exception_class &block

29.3. Spec syntax

Subjectively better structured, less repeating, more readable and TDD supporting syntax can be
used. See the following example.

48

http://docs.seattlerb.org/minitest/Minitest/Assertions.html
http://docs.seattlerb.org/minitest/Minitest/Assertions.html

require 'minitest/autorun’
require 'morse_coder.rb’

describe MorseCoder do
let(:coder) { MorseCoder.new(...) }

describe 'single letters encoding' do
let(:a) { coder.a }
let(:b) { coder.b }

specify { a.must_equal '.-' }
specify { b.must_equal '-..." }
end
end

Describe block wraps logical block. Each such block can have it’s own before (aka setup). With let
we define method that can be called later within any nested block. Let is lazy. specify accepts a lock
that uses assertion helpers in form of must_$assert or wont_$assert. There are many other
extensions to this language so it reads more naturally.

Note that since the implementation is the same, you can combine both at the same time.
29.4. Output of test run

Run options: --seed 25127
Running tests:
S Foorrnt

Finished tests in 101.524752s, 6.4319 tests/s, 9.0618 assertions/s
63 tests, 92 assertions, 1 failures, @ errors, S skips

1) Failure:

TestConnector#ftest_connection [./connector.rb:5]:
Expected: nil
Actual: "that I expect"

The seed is random number representing the order of test. Note that your tests should be order
indpenendant.

29.5. Running multiple test files

It’s common to have more than just one test file in project. To run all tests at once we can use Rake.
Usually tests are put in test directory in the project tree structure. In such setup we can easily
define test task in Rakefile. Rake provides built-in class for this, we just need to configure it. Just put
following into your Rakefile.

49

require 'rake/testtask’

Rake::TestTask.new do |t]
t.1libs << 'test'
t.test_files = Dir.glob('test/**/*_test.rb")
t.verbose true

end

we can run rake test which will load a run all ruby scripts with _test suffix in the test directory
including all of its subdirectories. If you prefer test to be the default rake task, add following to the
Rakefile

task :default => [:test]

now you can run all tests just by running rake.

Another common practise is to have one file that is loaded at start, usually named test_helper.rb.
This file contains everything that is needed for all tests, like requiring additional testing libraries.
You can also put require minitest/autorun there. Just note that you need to require 'test_helper' as
first line of every test file.

29.6. Test coverage

To get a good overview of what needs test coverage it’s useful to setup code coverage check. A
simplecov gem can generate html report. Just put following on top of you test_helper.rb

require 'simplecov'
SimpleCov.start

you can also define a minimum coverage in percents
SimpleCov.minimum_coverage 95

Now when you run your test suite, new directory called coverage will be created. See
coverage/index.html for details how well your code is covered with tests.

29.7. Stubbing

Sometimes we don’t want to call all method chain when we test just single method behavior. This
applies especially in unit testing where we test just small piece of code. Since Ruby is dynamic
language, it’s easy to cut off some methods. This is called stubbing (leaving stubs).

Let’s look at following example

50

https://github.com/colszowka/simplecov

class TemperatureMeter
def measure(output)
temp = rand(21) + 20
output.puts temp
temp
end
end

The test covering this should call method measure and verify it returns reasonable temperature.
We don’t want our test to print anything to STDOUT. We can stub out puts method easily like this

def test_measure
meter = TemperatureMeter.new
STDOUT.stub(:puts, nil) do
result = meter.measure(STDOUT)
assert_kind _of Fixnum, result
assert_includes 20..40, result
end
end

With this stubbing, puts method is replaced by new empty method that returns the second
argument, in this case nil. The stub is applied only within the stub block.

29.8. Mocking

Mocking is related to stubbing. Imagine we wanted to check that measure method really called puts
on output object. The method is written in a way that it accepts custom output object, which makes
testing easy. We can simply pass any object that implements method puts, e.g. file handler, socket or
our own testing object. Or we can use mocks. Mock is a blank object on which we can define
expectations.

For example we can create a mock instance and specify that its method puts should be called
exactly once during the test.

def test_measure_print_the_value
meter = TemperatureMeter.new
mock = Minitest::Mock.new
mock.expect(:puts, nil, [20..40])
result = meter.measure(mock)
mock.verify

end

First expect argument is the name of method to be called, second is the return value and third is the
array containing arguments which the puts should be called.

You could also stub the rand method to return let’s say @ and then setup expectation that mock’s puts

51

method will receive 20 as a parameter to print. But the range also works so the mock accepts any
value between 20 and 40.

You have to call verify on mock so it runs assertions on how many times the expected method was
called. To expect another call of puts, just define new expectation with .expect.

29.9. Stubbing network calls

If your app communicates with external services over HTTP you most likely need to fake the
communication in your test suite. Reasons include performance, spamming of remote services,
avoiding credentials leaks, error state testing. Constructing the whole net/http response object can
be complicated. Luckily there are tools that can help you greatly.

First is webmock gem. It provides helpers to stub low-level methods easily. To use it, install the gem

and just add following to your tests.

require 'webmock/minitest’
stub_request(:get, 'www.example.com')

Net::HTTP.get('www.example.com', '/') # this will succeed
You can also specify more conditions to match the request as well as return value

stub_request(:post, 'www.example.com').with(:body => 'ping').to_return(:body =>
Ipongl)

Custome headers can be added too. Webmock works with higl level libraries such as popular
Restclient gem.

Another useful tool is ver. The name was chosen because of analogy with videocassette recorder. It
can record a real network communication and replay it later. This can be nicely used in tests. You
only record the communication once during writing tests and replay it while running tests in future
or on CI server. You can have multiple communications recorded and just swap cassetes for each
test. Example follows

52

https://github.com/bblimke/webmoc
https://github.com/rest-client/rest-client
https://github.com/vcr/vcr
https://en.wikipedia.org/wiki/Videocassette_recorder

require 'ver

VCR.configure do |config]|
config.cassette_library_dir = "fixtures/vcr_cassettes" # storage for cassetes
config.hook_into :webmock # webmock integration
end

class VCRTest < Minitest::Test
def test_example_dot_com
VCR.use cassette("success info") do
response = Net::HTTP.get_response(URI("http://www.example.com/"))
assert_match /Example Domain/, response.body
end
end
end

29.10. Testing web applications

If you work on web app you can also easily test the interaction like users will interact through web
browser. This is useful when you write integration tests. A de facto standard is capybara gem that
provides drivers for various browser backends. The simplest to setup driver is RackTest, so you can
start with it as long as your app uses rack.

If you need advanced stuff like testing pages with asynchronous requests through AJAX you can use
Selenium driver which runs firefox in headless mode. If you want to run such tests on CI server
without X11 server, there’s Poltergeist driver using Phantom]S.

An example of simple test, supposing my_app.rb contains rack based app (e.g. using Sinatra).

53

https://github.com/jnicklas/capybara
https://rack.github.io/
http://www.sinatrarb.com/

require 'minitest/autorun’
require 'capybara/dsl’
require './my_app.rb'

Capybara.app = MyApp
Capybara.default_driver = :rack_test

class MyAppTest < Minitest::Test
include Capybara::DSL

def test_index
visit '/’
click_link 'login'
fill_in('Login', with: 'Marek")
fi1l _in('Password', with: 'secret')
click_button('Submit")

assert page.has_selector('div p.success")
assert page.has_content?('Welcome Marek")
end

def teardown
Capybara.reset_sessions!
Capybara.use_default_driver
end
end

29.11. Cucumber

We can use Cucumber framework for BDD aproach. It allows us to write the behavior specification
in natural language first and then convert it to test step by step. Imagine you’d describe a feature
like this

Feature: logout of logged in user

Scenario: User can log out from app
Given I'm logged in as user ares
And I'm on host list page
When I click logout link
Then I should see logout notification

It’s a valid cucumber test (aka feature) which only needs implementing those steps, usign capybara
for example.

54

https://cucumber.io/

Given(/M'm logged in as user (.*)$/) do |user|
visit '/’
fill_in "login", with: user
fill_in "password", with: 'testpassword'
click_button 'login’

end

Given(/M'm on (.*) (.*) page$/) do |resource, action|
visit "/#{resource}//{action}"
end

When(/AT click (.*) link$/) do |identifier|
click_link identifier
end

Then(/M should see logout notification$/) do
assert page.has_content 'div p.logout_notification'
end

One advantage that it brigns is, that your tests are live documentation too.

55

Standard library & libraries

Get the know all the awesome stuff included in Ruby and in ecosystem

56

Chapter 30. Files

57

Ruby on Ralils

Develop web applications with ease.

58

Chapter 31. Introduction

59

	Programming Ruby
	Table of Contents
	Ruby basics
	Chapter 1. Instalation
	1.1. Linux
	1.2. Windows
	1.3. macOS

	Chapter 2. Running Ruby
	2.1. Interactive Ruby

	Chapter 3. About Ruby
	3.1. Interpreted
	3.2. Universal
	3.3. Fully Object oriented
	3.4. Everything is an expression
	3.5. Atomic memory management
	3.6. MRI
	3.7. Strongly typed
	3.8. Dynamically typed
	3.9. What is written in Ruby?

	Chapter 4. Conventions
	Chapter 5. Basic syntax
	5.1. Operator priority
	5.2. Special characters in method names
	5.3. Comments

	Chapter 6. Data types
	6.1. Strings
	6.2. Numbers
	6.3. Empty value
	6.4. Booleans
	6.5. Arrays
	6.6. Hashes
	6.7. Symbols

	Chapter 7. Objects and methods
	Chapter 8. Variables
	Chapter 9. Conditions
	Chapter 10. Logical operators
	Chapter 11. Regular expressions
	Chapter 12. Loops
	Chapter 13. Methods
	Chapter 14. Reusing code from other files
	Chapter 15. Blocks
	Chapter 16. Objects
	Chapter 17. Inheritance
	Chapter 18. Class methods and attributes
	Chapter 19. Modules
	Chapter 20. Method access
	Chapter 21. Duck typing
	Chapter 22. Exceptions

	Advanced Ruby
	Chapter 23. Return values
	Chapter 24. Context
	Chapter 25. Class
	25.1. Open classes
	25.2. What is a class?
	25.3. Inheritance
	25.4. Mixins
	25.5. Class introspections

	Chapter 26. Methods
	26.1. Extracting methods
	26.2. Checking method existence
	26.3. Dynamic method calling
	26.4. Defining methods programmatically
	26.5. Missing methods

	Chapter 27. Objects
	27.1. Creating new object
	27.2. Defining methods
	27.3. Eigenclass
	27.4. Method lookups

	Testing
	Chapter 28. Testing frameworks
	Chapter 29. Minitest
	29.1. Testunit syntax
	29.2. Assertions
	29.3. Spec syntax
	29.4. Output of test run
	29.5. Running multiple test files
	29.6. Test coverage
	29.7. Stubbing
	29.8. Mocking
	29.9. Stubbing network calls
	29.10. Testing web applications
	29.11. Cucumber

	Standard library & libraries
	Chapter 30. Files

	Ruby on Rails
	Chapter 31. Introduction

