IA008: Computational Logic 4. Deduction

Achim Blumensath

blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Tableaux

Tableau Proofs

For simplicity: first-order logic without equality

Statements φ true or φ false

Rule

Interpretation

If $\varphi \sigma$ is **possible** then so is $\psi_i \tau_i, \ldots, \vartheta_i v_i$, for some *i*.

Tableaux

Construction

A **tableau** for a formula φ is constructed as follows:

- start with φ false
- choose a branch of the tree
- choose a statement ψ value on the branch
- choose a rule with head ψ value
- add it at the bottom of the branch
- repeat until every branch contains both statements ψ true and ψ false for some formula ψ

c a new constant symbol, *t* an arbitrary term

 $\exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y)$ false $\exists x \forall y R(x, y)$ true $\forall y \exists x R(x, y)$ false $\forall y R(c, y)$ true $\exists x R(x, d)$ false R(c, d) true R(c,d) false

 $\forall x R(x, x) \rightarrow \forall x \exists y R(f(x), y)$ false $\forall x R(x, x)$ true $\forall x \exists y R(f(x), y)$ false $\exists y R(f(c), y)$ false R(f(c), f(c)) false R(f(c), f(c)) true

Soundness and Completeness

Theorem

A first-order formula φ is valid if, and only if, there exists a tableau *T* for φ false where every branch is contradictory.

Terminology

A tableau for a statement φ value is a tableau *T* where the root is labelled with φ value.

A branch β is **contradictory** if it contains both statements ψ true and ψ false, for some formula ψ .

A branch β is **consistent with** a structure \mathfrak{A} if

- $\mathfrak{A} \models \psi$, for all statements ψ true on β and
- $\mathfrak{A} \neq \psi$, for all statements ψ false on β .

A branch β is complete if, for every atomic formula ψ , it contains one of the statements ψ true or ψ false.

Proof Sketch: Soundness

Lemma

If β is consistent with \mathfrak{A} and we extend the tableau by applying a rule, the new tableau has a branch β' extending β that is consistent with \mathfrak{A} .

Corollary

If $\mathfrak{A} \not\models \varphi$, then every tableau for φ false has a branch that is not contradictory.

Corollary

If φ is not valid, there is no tableau for φ false where all branches are contradictory.

Proof Sketch: Completeness

Lemma

If every tableau for φ false has a non-contradictory branch, there exists a tableau for φ false with a branch β that is complete and non-contradictory.

Lemma

If a branch β is complete and non-contradictory, there exists a structure \mathfrak{A} such that β is consistent with \mathfrak{A} .

Corollary

If every tableau for φ false has a non-contradictory branch, there exists a structure \mathfrak{A} with $\mathfrak{A} \neq \varphi$.

Natural Deduction

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi \quad \varphi$ is provable with assumptions ψ_1, \ldots, ψ_n

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi$ φ is provable with assumptions ψ_1, \ldots, ψ_n φ is provable if $\vdash \varphi$.

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi \quad \varphi \text{ is provable with assumptions } \psi_1, \ldots, \psi_n$ $\varphi \text{ is provable if } \vdash \varphi.$

Rules

 $\frac{\Gamma_1 \vdash \varphi_1 \dots \Gamma_n \vdash \varphi_n}{\Delta \vdash \psi} \quad \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array} \quad \varphi_1 \land \dots \land \varphi_n \Rightarrow \psi$

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi \quad \varphi \text{ is provable with assumptions } \psi_1, \ldots, \psi_n$ $\varphi \text{ is provable if } \vdash \varphi.$

Rules

 $\frac{\Gamma_1 \vdash \varphi_1 \, \dots \, \Gamma_n \vdash \varphi_n}{\Delta \vdash \psi} \quad \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array} \qquad \varphi_1 \land \dots \land \varphi_n \Rightarrow \psi$

Axiom

 $\underline{\Delta \vdash \psi}$ rule without premises

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi \quad \varphi \text{ is provable with assumptions } \psi_1, \ldots, \psi_n$ $\varphi \text{ is provable if } \vdash \varphi.$

Rules

 $\frac{\Gamma_1 \vdash \varphi_1 \, \dots \, \Gamma_n \vdash \varphi_n}{\Delta \vdash \psi} \quad \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array} \quad \varphi_1 \land \dots \land \varphi_n \Rightarrow \psi$

Axiom

 $\Delta \vdash \psi$ rule without premises

Remark

Tableaux speak about **possibilities** while Natural Deduction proofs speak about **necesseties**.

Derivation

$$\frac{\overline{\Gamma \vdash \varphi} \quad \overline{\Delta_0 \vdash \psi_0}}{\underline{\Delta_1 \vdash \psi_1}} \quad \overline{\Gamma' \vdash \varphi'}$$

$$\frac{\overline{\Gamma' \vdash \varphi'}}{\Sigma \vdash \vartheta} \quad \text{tree of rules}$$

Natural Deduction (propositional part)

$$\begin{array}{ll} (\mathrm{I}_{\top}) & \overline{\Gamma \vdash \top} & (\mathrm{Ax}) & \overline{\Gamma, \varphi \vdash \varphi} \\ (\mathrm{I}_{\wedge}) & \frac{\Gamma \vdash \varphi & \Delta \vdash \psi}{\Gamma, \Delta \vdash \varphi \land \psi} & (\mathrm{E}_{\wedge}) & \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} & \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \\ (\mathrm{I}_{\vee}) & \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} & \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} & (\mathrm{E}_{\vee}) & \frac{\Gamma \vdash \varphi \lor \psi & \Delta, \varphi \vdash \vartheta & \Delta', \psi \vdash \vartheta}{\Gamma, \Delta, \Delta' \vdash \vartheta} \\ (\mathrm{I}_{-}) & \frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} & (\mathrm{E}_{-}) & \frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi} \\ (\mathrm{I}_{\perp}) & \frac{\Gamma \vdash \varphi & \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot} & (\mathrm{E}_{\perp}) & \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} \\ (\mathrm{I}_{\rightarrow}) & \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi} & (\mathrm{E}_{\rightarrow}) & \frac{\Gamma \vdash \varphi & \Delta \vdash \varphi \rightarrow \psi}{\Gamma, \Delta \vdash \psi} \\ (\mathrm{I}_{\leftrightarrow}) & \frac{\Gamma, \varphi \vdash \psi & \Delta, \psi \vdash \varphi}{\Gamma, \Delta \vdash \varphi \leftrightarrow \psi} & (\mathrm{E}_{\leftrightarrow}) & \frac{\Gamma \vdash \varphi & \Delta \vdash \varphi \leftrightarrow \psi}{\Gamma, \Delta \vdash \psi} & (+ \operatorname{sym.}) \end{array}$$

	$\neg \varphi \land \neg \psi \vdash \neg \varphi \land \neg \psi$	
	$\varphi \vdash \varphi \qquad \neg \varphi \land \neg \psi \vdash \neg \varphi$	
$\varphi \lor \psi, \neg \varphi \land \neg \psi \vdash \varphi \lor \psi$	$arphi, eg \phi, eg \psi \vdash ot$	$\psi, \neg \varphi \land \neg \psi \vdash \bot$
	$\varphi \lor \psi, \neg \varphi \land \neg \psi \vdash \bot$	
	$\varphi \lor \psi \vdash \neg (\neg \varphi \land \neg \psi)$	
	$\vdash (\varphi \lor \psi) \to \neg (\neg \varphi \land \neg \psi)$	

Natural Deduction (quantifiers and equality)

$$\begin{array}{l} (\mathrm{I}_{\exists}) \ \frac{\Gamma \vdash \varphi[x \mapsto t]}{\Gamma \vdash \exists x \varphi} & (\mathrm{E}_{\exists}) \ \frac{\Gamma \vdash \exists x \varphi \quad \Delta, \varphi[x \mapsto c] \vdash \psi}{\Gamma, \Delta \vdash \psi} \\ (\mathrm{I}_{\forall}) \ \frac{\Gamma \vdash \varphi[x \mapsto c]}{\Gamma \vdash \forall x \varphi} & (\mathrm{E}_{\forall}) \ \frac{\Gamma \vdash \forall x \varphi}{\Gamma \vdash \varphi[x \mapsto t]} \\ (\mathrm{I}_{=}) \ \frac{\Gamma \vdash t = t}{\Gamma \vdash t = t} & (\mathrm{E}_{=}) \ \frac{\Gamma \vdash s = t \quad \Delta \vdash \varphi[x \mapsto s]}{\Gamma, \Delta \vdash \varphi[x \mapsto t]} \end{array}$$

c a new constant symbol, s, t arbitrary terms

 $s = t \vdash t = s$

$$s = t \vdash t = s \qquad \frac{s = t \vdash s = t}{s = t \vdash t = s} \quad (E_{=})$$

$$s = t \vdash t = s \qquad \frac{s = t \vdash s = t \qquad \vdash s = s}{s = t \vdash t = s} \quad (E_{=})$$

$$s = t, t = u \vdash s = u$$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ (E₌)

$$s = t, t = u \vdash s = u$$
 $\frac{t = u \vdash t = u \quad s = t \vdash s = t}{s = t, t = u \vdash s = u}$ (E₌)

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ (E₌)

$$s = t, t = u \vdash s = u \qquad \frac{t = u \vdash t = u \qquad s = t \vdash s = t}{s = t, t = u \vdash s = u} \quad (E_{=})$$

 $\exists x \forall y R(x, y) \vdash \forall y \exists x R(x, y)$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ (E₌)

$$s = t, t = u \vdash s = u \qquad \frac{t = u \vdash t = u \qquad s = t \vdash s = t}{s = t, t = u \vdash s = u} \quad (E_{=})$$

$$\frac{\exists x \forall y R(x,y) \vdash \forall y \exists x R(x,y)}{\exists x \forall y R(x,y) \vdash \exists x \forall y R(x,y)} \xrightarrow{\forall y R(c,y) \vdash \forall y R(c,y)}{\forall y R(c,y) \vdash \exists x R(x,d)} (E_{\forall})$$

$$\frac{\exists x \forall y R(x,y) \vdash \exists x \forall y R(x,y)}{\exists x \forall y R(x,y) \vdash \forall y \exists x R(x,y)} (E_{\exists})$$

Soundness and Completeness

Theorem

A formula φ is provable using Natural Deduction if, and only if, it is valid.

Corollary

The set of valid first-order formulae is recursively enumerable.

Isabelle/HOL

Isabelle/HOL

Proof assistant designed for software verification.

General structure

```
theory T
imports T1 ... Tn
begin
declarations, definitions, and proofs
end
```

Syntax

Two levels:

- the meta-language (Isabelle) used to define theories,
- the logical language (HOL) used to write formulae.

To distinguish the levels, one encloses formulae of the logical language in quotes.

Logical Language

Types

- base types: bool, nat, int,...
- type constructors: α list, α set,...
- function types: $\alpha \Rightarrow \beta$
- type variables: 'a, 'b,...

Terms

- application: f x y, x + y,...
- **abstraction**: $\lambda x.t$
- type annoation: $t :: \alpha$
- if b then t else u
- let x = t in u
- case x of $p_0 \Rightarrow t_0 \mid \cdots \mid p_n \Rightarrow t_n$

Formulae

- terms of type bool
- boolean operations \neg , \land , \lor , \rightarrow
- quantifiers $\forall x, \exists x$
- predicates ==, <,...</p>

Basic Types

```
datatype bool = True | False
```

```
fun conj :: "bool => bool => bool" where
"conj True True = True" |
"conj _ _ = False"
```

datatype nat = 0 | Suc nat

```
lemma add_02: "add m 0 = m"
apply (induction m)
apply (auto)
```

lemma add_02: "add m 0 = m"

```
lemma add_02: "add m 0 = m"
```

```
apply (induction m)
```

lemma add_02: "add m 0 = m" apply (induction m) 1. add 0 0 = 0 2. \mathcal{m}. add m 0 = m ==> add (Suc m) 0 = Suc m

```
lemma add_02: "add m 0 = m"
apply (induction m)
1. add 0 0 = 0
2. \m. add m 0 = m ==> add (Suc m) 0 = Suc m
apply (auto)
```

datatype 'a list = Nil ("[]") | Cons 'a "'a list" (infixr "#" 65) fun app :: "'a list => 'a list => 'a list" (infixr "@" 65) where "[]@ys = ys" "(x # xs) @ ys = x # (xs @ ys)"fun rev :: "'a list => 'a list" where "rev [] = []" | "rev (x # xs) = (rev xs) @ (x # [])"

theorem rev_rev [simp]: "rev (rev xs) = xs"

theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)

```
theorem rev_rev [simp]: "rev (rev xs) = xs"
```

apply(induction xs)

```
1. rev (rev Nil) = Nil
2. \x1 xs. rev (rev xs) = xs ==>
rev (rev (Cons x1 xs)) = Cons x1 xs
```

```
theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)
1. rev (rev Nil) = Nil
2. \lambda x1 xs. rev (rev xs) = xs ==>
    rev (rev (Cons x1 xs)) = Cons x1 xs
apply(auto)
```

```
theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)
1. rev (rev Nil) = Nil
2. \lambda x1 xs. rev (rev xs) = xs ==>
    rev (rev (Cons x1 xs)) = Cons x1 xs
apply(auto)
1. \lambda x1 xs.
    rev (rev xs) = xs ==>
    rev (rev xs @ Cons x1 Nil) = Cons x1 xs
```

```
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
```

```
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
```

```
lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"
apply(induction xs)
apply(auto)
1. \x1 xs.
  rev (xs @ ys) = rev ys @ rev xs ==>
  (rev ys @ rev xs) @ Cons x1 Nil =
  rev ys @ (rev xs @ Cons x1 Nil)
```

```
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
```

```
lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"
apply(induction xs)
apply(auto)
1. ∧x1 xs.
  rev (xs @ ys) = rev ys @ rev xs ==>
  (rev ys @ rev xs) @ Cons x1 Nil =
  rev ys @ (rev xs @ Cons x1 Nil)
lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply (induction xs)
apply (auto)
done
```

```
lemma app_Nil2 [simp]: "xs @ [] = xs"
apply(induction xs)
apply(auto)
done
```

```
lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induction xs)
apply(auto)
done
```

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induction xs)
apply(auto)
done

```
theorem rev_rev [simp]: "rev(rev xs) = xs"
apply(induction xs)
apply(auto)
```

Nonmonotonic Logic

Negation as Failure

Goal

Develop a proof calculus supporting Negation as Failure as used in Prolog.

Monotonicity

Ordinary deduction is **monotone**: if we add new assumption, all consequences we have already derived remain. More information does not invalidate already made deductions.

Non-Monotonicity

Negation as Failure is non-monotone:

P implies $\neg Q$ but *P*, *Q* does not imply $\neg Q$.

Default Logic

Rule

$$\frac{\alpha_0 \ \dots \ \alpha_m : \beta_0 \ \dots \ \beta_n}{\gamma} \qquad \begin{array}{c} \alpha_i & \text{assumptions} \\ \beta_i & \text{restraints} \\ \gamma & \text{consequence} \end{array}$$

Derive γ provided that we can derive $\alpha_0, \ldots, \alpha_m$, but none of β_0, \ldots, β_n .

$$\frac{\operatorname{bird}(x) : \operatorname{penguin}(x) \operatorname{ostrich}(x)}{\operatorname{can_fly}(x)}$$

Semantics

Definition

A set Φ of formulae is **consistent** with respect to a set of rules *R* if, for every rule

$$\frac{\alpha_0 \ldots \alpha_m : \beta_0 \ldots \beta_n}{\gamma} \in R$$

such that $\alpha_0, \ldots, \alpha_m \in \Phi$ and $\beta_0, \ldots, \beta_n \notin \Phi$, we have $\gamma \in \Phi$.

Note

If there are no restraints β_i , consistent sets are closed under intersection.

 \Rightarrow There is a unique smallest such set, that of all **provable** formulae.

If there are restraints, this may not be the case. Formulae that belong to all consistent sets are called **secured consequences**.

The system

$$\frac{\alpha : \beta}{\beta}$$

has a unique consistent set $\{\alpha, \beta\}$.

The system

$$\frac{\alpha : \beta}{\gamma} \quad \frac{\alpha : \gamma}{\beta}$$

has consistent sets

 $\{\alpha,\beta\}, \{\alpha,\gamma\}, \{\alpha,\beta,\gamma\}.$