[Aoo8: Computational Logic
6. Modal Logic

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Basic Concepts

Transition Systems

directed graph & = (S, (Eq)aeas (P,-),-d,so) with
> states S
> initial state sy € S
» edge relations E, with edge colours a € A (‘actions’)

» unary predicates P; with vertex colours i € I (‘properties’)
_..—“..Q @

b b

a,b Co<—oQ a
g b 9

Modal logic

Propositional logic with modal operators

» (a)p ‘there exists an a-successor where ¢ holds’

» [a]le¢ ‘¢ holds in every a-successor’

Notation: <¢, O if there are no edge labels

Formal semantics

S,sEP
S,sEQAY
S,sEQVvy
S,sE ¢
S,sE (a)p
S,sE [alg

seP

S,sEpand &,s=y
S,sEporG,sEy

S,sH# ¢

thereis s >” t such that 5, ¢ = ¢
foralls > ¢, wehave S,t = ¢

Examples

PAOQ “The state is in P and there exists a transition to Q.

[a]L “The state has no outgoing a-transition’

Interpretations

» Temporal Logic talks about time:
> states: points in time (discrete/continuous)
» O¢ ‘sometime in the future ¢ holds’
» O¢p ‘always in the future ¢ holds’
» Epistemic Logic talks about knowledge:
> states: possible worlds
» O¢ ‘g might be true’
» O¢ ‘¢ is certainly true’

Examples: Temporal Logic

system S = (S, <, P)

» “P never holds”

Examples: Temporal Logic

system S = (S, <, P)

> “P never holds”
> “After every P there is some Q.

Examples: Temporal Logic

system S = (S, <, P)
> “P never holds.”
-OP
> “After every P there is some Q.
o(P —» ©Q)
> “Once P holds, it holds forever”

Examples: Temporal Logic

system S = (S, <, P)
> “P never holds.”
-OP
> “After every P there is some Q.
o(P —» ©Q)
> “Once P holds, it holds forever”
o(P — OP)

» “There are infinitely many P

Examples: Temporal Logic

system S = (S, <, P)

> “P never holds”
-OP

> “After every P there is some Q.
0(P - ©Q)

> “Once P holds, it holds forever”
o(P — OP)

» “There are infinitely many P
ooP

Translation to first-order logic

Proposition

For every formula ¢ of propositional modal logic, there exists a
formula ¢ (x) of first-order logic such that

S,sEe iff SE@(s).

Proof

Translation to first-order logic

Proposition

For every formula ¢ of propositional modal logic, there exists a
formula ¢ (x) of first-order logic such that

S,sEe iff SE@(s).
Proof

P* := P(x)
(pAy)" = 9™ (x) Ay (x)
(pvy)' = 9™ (x) vy (x)
(~9)" = -9"(x)
({a)e)™ = Fy[Ea(x,9) A 0" (¥)]
([alg)" = Vy[Ea(x.y) = 9" (¥)]

Bisimulation

S and T transition systems
Z ¢ S x T is a bisimulation if, for all (s, t) € Z,
(local) seP < teP
(forth) for everys —% ¢/, exists t % t' with (s', 1) € Z,

(back) for everyt —“ ¢/, exists s > s’ with (s', 1) € Z.

S, sand T, t are bisimilar if there is a bisimulation Z with (s, t) € Z.

S Z t
a a
v Z v
s/ t'

Examples

Examples

Examples

Examples

.........................

Unravelling

G | u(cs)l

T TN
N
VARV

Lemma
S and U (S) are bisimilar.

Bisimulation invariance

Theorem

Two finite transition systems & and ¥ are bisimilar if, and only if,

GFe < TEFEo, for every modal formula ¢ .

Definition

A formula ¢(x) is bisimulation invariant if

S,s~%,t implies Gk ¢(s) < TE ().

Theorem

A first-order formula ¢ is equivalent to a modal formula if, and only
if, it is bisimulation invariant.

First-Order Modal Logic

Syntax
first-order logic with modal operators (a)¢ and [a]¢@

First-Order Modal Logic

Syntax
first-order logic with modal operators (a)¢ and [a]¢@

Models
transistion systems where each state s is labelled with a >-structure 2,
such that

s—>%t implies A;C A,

First-Order Modal Logic

Syntax
first-order logic with modal operators (a)¢ and [a]¢@

Models
transistion systems where each state s is labelled with a >-structure 2,
such that

s—>%t implies A;C A,
Examples

» OVxe(x) > Vx O ¢(x) is valid.
» VxO¢(x) > OVxe(x) is not valid.

Tableaux

Tableau Proofs

Statements
SE@ SEQ s>t

s, t state labels, ¢ a modal formula

Rules
S E q)

/N

SEYe T s 9,

SHE U sE 9,

Tableaux

Construction

A tableau for a formula ¢ is constructed as follows:

| 2

| 2

| 2

start with so ¥ ¢

choose a branch of the tree

choose a statement s = /s ¥ v on the branch
choose a rule with head s = y/s & v

add it at the bottom of the branch

repeat until every branch contains both statements s = y and
s # v for some formula y

Tableaux

Construction

A tableau for a formula ¢ is constructed as follows:

| 2

| 2

| 2

start with so ¥ ¢

choose a branch of the tree

choose a statement s = /s ¥ v on the branch
choose a rule with head s = y/s & v

add it at the bottom of the branch

repeat until every branch contains both statements s = y and
s # v for some formula y

Tableaux with premises I

| 2

choose a branch, a state s on the branch, a premise y € I', and add
s = v to the branch

Rules

SE @ SHE @
| |
SEQ SE¢@
SEQAY SEQAY SEQVY SEQVY
SE@ SE @ SE Y SE@ SEY SEQ
| |
SEY SHEY
SIS =1 SEQ =y SE9oy SEQey
N |

Rules

sk (a)o st (a)g sk [ale st [alo
s—lat t'hlﬁfp t’ilzqo s—>|“t
tizl(p ti?l(p
skEVxe S#EVxe sk dxe s dxe

sEgolx—u]l sHEe[xc] sEexec] s o[x e u]

t a new state, ¢’ every state with entry s - ¢’ on the branch,
¢ a new constant symbol, u an arbitrary term

Example ¢ F O¢

Example = 0O(¢ - v) - (O¢p — Oy)

st O(p — y) —» (Qp » Oy)
sEO(p > y)

sEe —» Oy

sEe

s Oy

Example F OVxg — VxO¢

sEOVxe —» VxOe

seE0Vxe

sk VxOe

sk Og[x — c]

s—>t

L o[x]

tEVxg

tE @[x]

Soundness and Completeness

Consequence

v is a consequence of I' if, and only if, for all transition systems &,
S,se¢@, forallseSandgel,
implies that

S,s=y, forallseS.

Soundness and Completeness

Consequence

v is a consequence of I' if, and only if, for all transition systems &,
S,se¢@, forallseSandgel,
implies that

S,s=y, forallseS.

Theorem

A modal formula ¢ is a consequence of I' if, and only if, there exists a
tableau T for ¢ with premises I" where every branch is contradictory.

Complexity

Theorem

Satisfiability for propositional modal logic is in deterministic linear
space.

Theorem

Satisfiability for first-order modal logic is undecidable.

Temporal Logics

Linear Temporal Logic (LTL)

Speaks about paths. P—e—e—PQ—Q— 0—>-

Syntax
> atomic predicates P, Q, . ..
> boolean operations A, Vv, -
> next X¢
> until pUy
» finally Fo :=TU¢
» generally G := -F-¢

Examples
FP a state in P is reachable
GFP we can reach infinitely many states in P

(=P)U(P A Q) the first reachable state in P is also in Q

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:
» L can be defined in LTL.
» L can be defined in first-order logic.

» L can be defined by a star-free regular expression.

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:
> L can be defined in LTL.
» L can be defined in first-order logic.

» L can be defined by a star-free regular expression.

Translation LTL to FO
P* := P(x)
(pry)” = ¢"(x) Ay'(x)
(pvy)™ = ¢"(x) vy (x)
(=)™ = —9"(x)
(X@)" == Iy[x<yn-Fz(x<zrz<y)ro*(y)]
(pUy)" = Ylx<yry () AVz[x<zaz<y—9'(2)]]

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:
» L can be defined in LTL.
» L can be defined in first-order logic.
» L can be defined by a star-free regular expression.

Theorem

Satisfiablity of LTL formulae is PSPACE-complete.

Theorem

Model checking G, s = ¢ for LTL is PSPACE-complete. It can be done
in

time O(|S]- 20(|"’|)) or space O((|g| +log|S])?).

(formula complexity: PSPACE-complete; data complexity:
NLOGSPACE-complete)

Computation Tree Logic (CTL and CTL*)

Applies LTL-formulae to the branches of a tree.

Syntax (of CTL*)

> state formulae ¢:
p:=Plorglove|-p|Ay|Ey

» path formulae y:
ya=@lyaylyvy|-y|Xy|[yUy|Fy |Gy

Examples
TR a state in P is reachable
AFP every branch contains a state in P
EGFP there is a branch with infinitely many P
EGEFP there is a branch such that we can reach P from every

of its states

Theorem

Satisfiability for CTL is EXPTIME-complete.

Model checking G, s = ¢ for CTL is P-complete. It can be done in
time O(lg|-15I) or space O(lg|-log? (lgl - ISI)) .

(data complexity: NLOGSPACE-complete)

Theorem
Satisfiability for CTL is EXPTIME-complete.
Model checking G, s = ¢ for CTL is P-complete. It can be done in

time O(1g|-[s]) ot space O(lg]-log? (lg] S1)) .
(data complexity: NLOGSPACE-complete)
Theorem

Satisfiability for CTL* is 2EXPTIME-complete.

Model checking G, s = ¢ for CTL* is PSPACE-complete. It can be
done in

timeO(|S]2-20(|"’|)) or space O(|¢|(|g| +log|S])?).

(formula complexity: PSPACE-complete; data complexity:
NLOGSPACE-complete)

The modal y-calculus (L)

Adds recursion to modal logic.
Syntax

pu=Plore|ovel-g|{a)e]|[a]e|uX.o(X)]|vX.0(X)
(X positive in uX.¢(X) and vX.¢(X))

The modal y-calculus (L)

Adds recursion to modal logic.
Syntax
9:=Plonglovel-gl{a)g|[alg|uX.o(X)[vX.9(X)
(X positive in uX.¢(X) and vX.¢(X))
Semantics
Fp(X) = {s¢S|&.5F p(X)}

‘qu)(X) : Xo=0, Xj= F(p(X,')
VXgD(X) : XO =9, Xi+1 = F(p(X,')

The modal y-calculus (L)

Adds recursion to modal logic.
Syntax
¢:=Plonglovel-g[(ae][alp|uX.o(X)|vX.0(X)
(X positive in uX.¢(X) and vX.¢(X))
Semantics
Fo(X)={seS|6,sk¢(X)}
lqu)(X) : Xo=0, Xj= F(p(X,')
VXgD(X) : XO =9, Xi+1 = F(p(X,')
Examples

pX(Pv OX) o astate in P is reachable
vX(PAOX) there is a branch with all states in P

The modal y-calculus (L)

Theorem

A regular tree language can be defined in the modal y-calculus if, and
only if, it is bisimulation invariant.
Theorem

Satisfiability of y-calculus formulae is decidable and complete for
exponential time.

Model checking G, s = ¢ for the modal y-calculus can be done in
time O((|g|- |S|)“/’|).

(The satisfiability algorithm uses tree automata and parity games.)

Description Logics

Description Logic

General Idea

Extend modal logic with operations that are not
bisimulation-invariant.

Applications

Knowledge representation, deductive databases, system modelling,
semantic web

Ingredients
» individuals: elements (Anna, John, Paul, Marry,...)
> concepts: unary predicates (person, male, female,...)
» roles: binary relations (has_child, is_married_to,...)
» TBox: terminology definitions

» ABox: assertions about the world

Example

TBox

man := person A male
woman := person A female
father := man A Jhas_child.person

mother := woman A Jhas_child.person

ABox

man(John)
man(Paul)
woman(Anna)
woman(Marry)
has_child(Anna, Paul)

is_married_to(Anna, John)

Syntax

Concepts
¢p:=P|T|L[-¢|lorg|eVve|VRp|IRe|(2nR)|(<nR)
Terminology axioms
PEVY =y
TBox Axioms of the form P = ¢.
Assertions
¢(a) R(a,b)

Extensions
> operations onroles: RN'S, RUS, Ro S, =R, R*, R*, R™

» extended number restrictions: (>nR)¢, (<nR)¢

Algorithmic Problems

» Satisfiability: Is ¢ satisfiable?

> Subsumption: ¢ = y?

» Equivalence: ¢ = y?

» Disjointness: ¢ A y unsatisfiable?

All problems can be solved with standard methods like tableaux or
tree automata.

Semantic Web: OWL (functional syntax)

Ontology(
Class(pp:man complete
intersectionOf (pp:person pp:male))
Class(pp:woman complete
intersectionOf (pp:person pp:female))
Class(pp:father complete
intersectionOf (pp:man
restriction(pp:has_child pp:person)))
Class(pp:mother complete
intersectionOf (pp:woman
restriction(pp:has_child pp:person)))
Individual(pp:John type(pp:man))
Individual(pp:Paul type(pp:man))
Individual(pp:Anna type(pp:woman)
value(pp:has_child pp:Paul)
value(pp:is_married_to pp:John))
Individual(pp:Marry type(pp:woman))

