IA008: Computational Logic 6. Modal Logic

Achim Blumensath

blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Transition Systems

directed graph $\mathfrak{S} = \langle S, (E_a)_{a \in A}, (P_i)_{i \in I}, s_0 \rangle$ with

- states S
- initial state $s_0 \in S$
- edge relations E_a with edge colours $a \in A$ ('actions')
- unary predicates P_i with vertex colours $i \in I$ ('properties')

Modal logic

Propositional logic with modal operators

- $\langle a \rangle \varphi$ 'there exists an *a*-successor where φ holds'
- $[a]\varphi$ ' φ holds in every *a*-successor'

Notation: $\Diamond \varphi$, $\Box \varphi$ if there are no edge labels

Formal semantics

$$\begin{split} \mathfrak{S}, s &\models P & : \text{iff} \quad s \in P \\ \mathfrak{S}, s &\models \varphi \land \psi & : \text{iff} \quad \mathfrak{S}, s &\models \varphi \text{ and } \mathfrak{S}, s &\models \psi \\ \mathfrak{S}, s &\models \varphi \lor \psi & : \text{iff} \quad \mathfrak{S}, s &\models \varphi \text{ or } \mathfrak{S}, s &\models \psi \\ \mathfrak{S}, s &\models \neg \varphi & : \text{iff} \quad \mathfrak{S}, s &\models \varphi \\ \mathfrak{S}, s &\models \langle a \rangle \varphi & : \text{iff} & \text{there is } s \rightarrow^a t \text{ such that } \mathfrak{S}, t &\models \varphi \\ \mathfrak{S}, s &\models [a] \varphi & : \text{iff} & \text{for all } s \rightarrow^a t, \text{ we have } \mathfrak{S}, t &\models \varphi \end{split}$$

$P \land \diamondsuit Q$ 'The state is in *P* and there exists a transition to *Q*.' [*a*]_⊥ 'The state has no outgoing *a*-transition.'

Interpretations

- Temporal Logic talks about time:
 - states: points in time (discrete/continuous)
 - $\Diamond \varphi$ 'sometime in the future φ holds'
 - $\Box \varphi$ 'always in the future φ holds'
- Epistemic Logic talks about knowledge:
 - states: possible worlds
 - $\Diamond \varphi$ ' φ might be true'
 - $\Box \varphi$ ' φ is certainly true'

system $\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$

system $\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$

"P never holds."

 $\neg \diamondsuit P$

• "After every *P* there is some *Q*."

system $\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$

 $\neg \diamondsuit P$

- "After every *P* there is some *Q*." $\Box(P \to \Diamond Q)$
- "Once *P* holds, it holds forever."

system $\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$

 $\neg \diamondsuit P$

- "After every *P* there is some *Q*." $\Box(P \to \Diamond Q)$
- "Once *P* holds, it holds forever." $\Box(P \rightarrow \Box P)$
- "There are infinitely many *P*."

system $\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$

 $\neg \diamondsuit P$

- "After every *P* there is some *Q*." $\Box(P \to \Diamond Q)$
- "Once *P* holds, it holds forever." $\Box(P \to \Box P)$
- "There are infinitely many *P*." $\Box \diamondsuit P$

Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a formula $\varphi^*(x)$ of first-order logic such that

 $\mathfrak{S}, s \vDash \varphi$ iff $\mathfrak{S} \vDash \varphi^*(s)$.

Proof

Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a formula $\varphi^*(x)$ of first-order logic such that

$$\mathfrak{S}, s \vDash \varphi$$
 iff $\mathfrak{S} \vDash \varphi^*(s)$.

Proof

$$P^* := P(x)$$

$$(\varphi \land \psi)^* := \varphi^*(x) \land \psi^*(x)$$

$$(\varphi \lor \psi)^* := \varphi^*(x) \lor \psi^*(x)$$

$$(\neg \varphi)^* := \neg \varphi^*(x)$$

$$(\langle a \rangle \varphi)^* := \exists y [E_a(x, y) \land \varphi^*(y)]$$

$$([a]\varphi)^* := \forall y [E_a(x, y) \rightarrow \varphi^*(y)]$$

Bisimulation

 \mathfrak{S} and \mathfrak{T} transition systems $Z \subseteq S \times T$ is a **bisimulation** if, for all $\langle s, t \rangle \in Z$, (local) $s \in P \iff t \in P$ (forth) for every $s \rightarrow^a s'$, exists $t \rightarrow^a t'$ with $\langle s', t' \rangle \in Z$, (back) for every $t \rightarrow^a t'$, exists $s \rightarrow^a s'$ with $\langle s', t' \rangle \in Z$.

 \mathfrak{S} , *s* and \mathfrak{T} , *t* are **bisimilar** if there is a bisimulation *Z* with $(s, t) \in \mathbb{Z}$.

Unravelling

Lemma \mathfrak{S} and $\mathcal{U}(\mathfrak{S})$ are bisimilar.

Bisimulation invariance

Theorem

Two finite transition systems \mathfrak{S} and \mathfrak{T} are bisimilar if, and only if,

 $\mathfrak{S} \models \varphi \quad \Leftrightarrow \quad \mathfrak{T} \models \varphi$, for every modal formula φ .

Definition

A formula $\varphi(x)$ is bisimulation invariant if

 $\mathfrak{S}, s \sim \mathfrak{T}, t$ implies $\mathfrak{S} \models \varphi(s) \Leftrightarrow \mathfrak{T} \models \varphi(t)$.

Theorem

A first-order formula φ is equivalent to a **modal formula** if, and only if, it is **bisimulation invariant**.

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

Models

transistion systems where each state s is labelled with a \varSigma -structure \mathfrak{A}_s such that

 $s \rightarrow^a t$ implies $A_s \subseteq A_t$

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

Models

transistion systems where each state s is labelled with a \varSigma -structure \mathfrak{A}_s such that

 $s \rightarrow^a t$ implies $A_s \subseteq A_t$

- $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$ is valid.
- $\forall x \Box \varphi(x) \rightarrow \Box \forall x \varphi(x)$ is not valid.

Tableaux

Tableau Proofs

Statements

 $s \vDash \varphi \qquad s \nvDash \varphi \qquad s \rightarrow^a t$

s, t state labels, φ a modal formula

Rules

Tableaux

Construction

A **tableau** for a formula φ is constructed as follows:

- start with $s_0 \not\models \varphi$
- choose a branch of the tree
- choose a statement $s \models \psi/s \neq \psi$ on the branch
- choose a rule with head $s \models \psi/s \not\models \psi$
- add it at the bottom of the branch
- ► repeat until every branch contains both statements $s \models \psi$ and $s \not\models \psi$ for some formula ψ

Tableaux

Construction

A **tableau** for a formula φ is constructed as follows:

- start with $s_0 \not\models \varphi$
- choose a branch of the tree
- choose a statement $s \models \psi/s \neq \psi$ on the branch
- choose a rule with head $s \models \psi/s \neq \psi$
- add it at the bottom of the branch
- ▶ repeat until every branch contains both statements $s \models \psi$ and $s \not\models \psi$ for some formula ψ

Tableaux with premises Γ

• choose a branch, a state *s* on the branch, a premise $\psi \in \Gamma$, and add $s \models \psi$ to the branch

Rules

Rules

t a new state, *t'* every state with entry $s \rightarrow^a t'$ on the branch, *c* a new constant symbol, *u* an arbitrary term

Example $\varphi \vDash \Box \varphi$

Example $\vDash \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$

Example $\vDash \Box \forall x \varphi \rightarrow \forall x \Box \varphi$

Soundness and Completeness

Consequence

 ψ is a consequence of \varGamma if, and only if, for all transition systems $\mathfrak{S},$

 $\mathfrak{S}, s \vDash \varphi$, for all $s \in S$ and $\varphi \in \Gamma$,

implies that

 $\mathfrak{S}, s \vDash \psi$, for all $s \in S$.

Soundness and Completeness

Consequence

 ψ is a **consequence** of Γ if, and only if, for all transition systems \mathfrak{S} ,

 $\mathfrak{S}, s \vDash \varphi$, for all $s \in S$ and $\varphi \in \Gamma$,

implies that

 $\mathfrak{S}, s \models \psi$, for all $s \in S$.

Theorem

A modal formula φ is a consequence of Γ if, and only if, there exists a tableau T for φ with premises Γ where every branch is contradictory.

Complexity

Theorem

Satisfiability for propositional modal logic is in deterministic linear space.

Theorem

Satisfiability for first-order modal logic is undecidable.

Temporal Logics

Linear Temporal Logic (LTL)

Speaks about paths. $P \longrightarrow \bullet \longrightarrow P, Q \longrightarrow Q \longrightarrow \bullet \longrightarrow \cdots$

Syntax

- atomic predicates P, Q, ...
- boolean operations \land , \lor , \neg
- next $X\varphi$
- until $\varphi U \psi$
- finally $F\varphi := \top U\varphi$
- generally $G\varphi := \neg F \neg \varphi$

FP	a state in <i>P</i> is reachable
GFP	we can reach infinitely many states in ${\cal P}$
$(\neg P)U(P \land Q)$	the first reachable state in ${\cal P}$ is also in ${\cal Q}$
Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- ► *L* can be defined by a star-free regular expression.

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- ► *L* can be defined by a star-free regular expression.

Translation LTL to FO

$$P^* := P(x)$$

$$(\varphi \land \psi)^* := \varphi^*(x) \land \psi^*(x)$$

$$(\varphi \lor \psi)^* := \varphi^*(x) \lor \psi^*(x)$$

$$(\neg \varphi)^* := \neg \varphi^*(x)$$

$$(X\varphi)^* := \exists y [x < y \land \neg \exists z (x < z \land z < y) \land \varphi^*(y)]$$

$$(\varphi U\psi)^* := \exists y [x \le y \land \psi^*(y) \land \forall z [x \le z \land z < y \rightarrow \varphi^*(z)]]$$

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- ► *L* can be defined by a star-free regular expression.

Theorem

Satisfiablity of LTL formulae is PSPACE-complete.

Theorem

Model checking \mathfrak{S} , $s \models \varphi$ for LTL is **PSPACE-complete**. It can be done in

time
$$\mathcal{O}(|S| \cdot 2^{\mathcal{O}(|\varphi|)})$$
 or space $\mathcal{O}((|\varphi| + \log |S|)^2)$.

(formula complexity: **PSPACE-complete**; data complexity: **NLOGSPACE-complete**)

Computation Tree Logic (CTL and CTL*)

Applies LTL-formulae to the branches of a tree.

Syntax (of CTL*)

state formulae φ:

 $\varphi \coloneqq P \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid A \psi \mid E \psi$

• path formulae ψ:

 $\psi \coloneqq \varphi \mid \psi \land \psi \mid \psi \lor \psi \mid \neg \psi \mid X\psi \mid \psi U\psi \mid F\psi \mid G\psi$

Examples

- *EFP* a state in *P* is reachable
- *AFP* every branch contains a state in *P*
- *EGFP* there is a branch with infinitely many *P*
- *EGEFP* there is a branch such that we can reach *P* from every of its states

Theorem

Satisfiability for CTL is EXPTIME-complete.

Model checking \mathfrak{S} , $s \models \varphi$ for CTL is **P-complete**. It can be done in

time $\mathcal{O}(|\varphi| \cdot |S|)$ or space $\mathcal{O}(|\varphi| \cdot \log^2(|\varphi| \cdot |S|))$.

(data complexity: NLOGSPACE-complete)

Theorem

Satisfiability for CTL is EXPTIME-complete.

Model checking \mathfrak{S} , $s \models \varphi$ for CTL is **P-complete.** It can be done in

time $\mathcal{O}(|\varphi| \cdot |S|)$ or space $\mathcal{O}(|\varphi| \cdot \log^2 (|\varphi| \cdot |S|))$.

(data complexity: NLOGSPACE-complete)

Theorem

Satisfiability for CTL* is 2EXPTIME-complete.

Model checking \mathfrak{S} , $s \models \varphi$ for CTL* is **PSPACE-complete.** It can be done in

time $\mathcal{O}(|S|^2 \cdot 2^{\mathcal{O}(|\varphi|)})$ or space $\mathcal{O}(|\varphi|(|\varphi| + \log|S|)^2)$.

(formula complexity: **PSPACE-complete**; data complexity: **NLOGSPACE-complete**)

Adds recursion to modal logic.

Syntax

 $\varphi ::= P | \varphi \land \varphi | \varphi \lor \varphi | \neg \varphi | \langle a \rangle \varphi | [a] \varphi | \mu X. \varphi(X) | v X. \varphi(X)$ (*X* positive in $\mu X. \varphi(X)$ and $v X. \varphi(X)$)

Adds recursion to modal logic.

Syntax

 $\varphi ::= P | \varphi \land \varphi | \varphi \lor \varphi | \neg \varphi | \langle a \rangle \varphi | [a] \varphi | \mu X. \varphi(X) | v X. \varphi(X)$ (X positive in $\mu X. \varphi(X)$ and $v X. \varphi(X)$)

Semantics

 $F_{\varphi}(X) := \{ s \in S \mid \mathfrak{S}, s \models \varphi(X) \}$ $\mu X.\varphi(X) : X_{0} := \emptyset, \quad X_{i+1} := F_{\varphi}(X_{i})$ $\nu X.\varphi(X) : X_{0} := S, \quad X_{i+1} := F_{\varphi}(X_{i})$

Adds recursion to modal logic.

Syntax

 $\varphi ::= P | \varphi \land \varphi | \varphi \lor \varphi | \neg \varphi | \langle a \rangle \varphi | [a] \varphi | \mu X. \varphi(X) | \nu X. \varphi(X)$ (X positive in $\mu X. \varphi(X)$ and $\nu X. \varphi(X)$)

Semantics

$$F_{\varphi}(X) := \{ s \in S \mid \mathfrak{S}, s \models \varphi(X) \}$$

$$\mu X.\varphi(X) : \quad X_0 := \emptyset, \quad X_{i+1} := F_{\varphi}(X_i)$$

$$\nu X.\varphi(X) : \quad X_0 := S, \quad X_{i+1} := F_{\varphi}(X_i)$$

Examples

$$\begin{split} \mu X(P \lor \diamondsuit X) & \text{a state in } P \text{ is reachable} \\ \nu X(P \land \diamondsuit X) & \text{there is a branch with all states in } P \end{split}$$

Theorem

A regular tree language can be defined in the modal μ -calculus if, and only if, it is bisimulation invariant.

Theorem

Satisfiability of μ -calculus formulae is decidable and complete for exponential time.

Model checking $\mathfrak{S}, s \models \varphi$ for the modal μ -calculus can be done in time $\mathcal{O}((|\varphi| \cdot |S|)^{|\varphi|})$.

(The satisfiability algorithm uses tree automata and parity games.)

Description Logics

Description Logic

General Idea Extend modal logic with operations that are not bisimulation-invariant.

Applications

Knowledge representation, deductive databases, system modelling, semantic web

Ingredients

- individuals: elements (Anna, John, Paul, Marry,...)
- concepts: unary predicates (person, male, female,...)
- roles: binary relations (has_child, is_married_to,...)
- TBox: terminology definitions
- ABox: assertions about the world

Example

TBox

```
man := person ∧ male
woman := person ∧ female
father := man ∧ ∃has_child.person
mother := woman ∧ ∃has_child.person
```

ABox

```
man(John)
man(Paul)
woman(Anna)
woman(Marry)
has_child(Anna, Paul)
is_married_to(Anna, John)
```

Syntax

Concepts

 $\varphi ::= P \mid \top \mid \bot \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \forall R\varphi \mid \exists R\varphi \mid (\ge nR) \mid (\le nR)$

Terminology axioms

$$\varphi \sqsubseteq \psi \qquad \varphi \equiv \psi$$

TBox Axioms of the form $P \equiv \varphi$.

Assertions

 $\varphi(a)$ R(a,b)

Extensions

- operations on roles: $R \cap S$, $R \cup S$, $R \circ S$, $\neg R$, R^+ , R^* , R^-
- extended number restrictions: $(\geq nR)\varphi$, $(\leq nR)\varphi$

Algorithmic Problems

- **Satisfiability**: Is *φ* satisfiable?
- Subsumption: $\varphi \models \psi$?
- Equivalence: $\varphi \equiv \psi$?
- **Disjointness:** $\varphi \land \psi$ unsatisfiable?

All problems can be solved with standard methods like tableaux or tree automata.

Semantic Web: OWL (functional syntax)

Ontology(Class(pp:man complete intersectionOf(pp:person pp:male)) Class(pp:woman complete intersectionOf(pp:person pp:female)) Class(pp:father complete intersectionOf(pp:man restriction(pp:has_child pp:person))) Class(pp:mother complete intersectionOf(pp:woman restriction(pp:has_child pp:person))) Individual(pp:John type(pp:man)) Individual(pp:Paul type(pp:man)) Individual(pp:Anna type(pp:woman) value(pp:has_child pp:Paul) value(pp:is_married_to pp:John)) Individual(pp:Marry type(pp:woman))

)