IA008: Computational Logic 7. Many-Valued Logics

Achim Blumensath

blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Many-valued logics: Motivation

To some sentences we cannot – or do not want to – assign a truth value since

- they make presuppositions that are not fulfilled John regrets beating his wife.
 John does not regret beating his wife.
- they refer to non-existing objects The king of Paris has a pet lion.
- they are too vague The next supermarket is far away.
- we have insufficient information The favourite colour of Odysseus was blue.
- we cannot determine their truth *The Goldbach conjecture holds.*

This leads to logics with truth values other than 'true' and 'false'.

3-valued logic

truth values 'false' \bot , 'uncertain' *u*, and 'true' \top .

A	$\neg A$	^	\perp	и	Т	\vee	\bot	и	Т
\perp	Т	\perp	\perp	\perp	\perp	\perp	\perp	и	Т
и	и	и	\perp	и	и	и	и	и	Т
Т	\perp	Т	\perp	и	Т	Т	Т	Т	Т

Kleene K3			Łukasiewicz L3				
\rightarrow	\bot	и	Т	\rightarrow	\bot	и	Т
Ţ	Т	Т	Т	T	Т	Т	Т
и	и	u	Т	и	и	Т	Т
Т	\perp	и	Т	Т	\perp	и	Т

A	В	$A \land (A \to B)$	$A \land (A \to B) \to B$
T	\perp	\perp	Т
\perp	и	\perp	Т
\perp	Т	\perp	Т
и	\perp	и	и
и	и	и	u/\top
и	Т	и	Т
Т	\perp	\perp	Т
Т	и	и	u/\top
Т	Т	Т	Т

Fuzzy logic

Truth values: $v \in [0, 1]$ measuring how true a statement is. 0 means 'false' and 1 means 'true'.

Several possible semantics:

$\neg A$	$A \wedge B$	$A \lor B$	$A \rightarrow B$
1 - A	$A \cdot B$	1-(1-A)(1-B)	1 - A(1 - B)
1 - A	$\min(A, B)$	$\max(A, B)$	$\max(1-A,B)$
1 - A	$\max(A+B-1,0)$	$\min(A+B,1)$	$\min(1-A+B,1)$

 $A \land (A \to B) \to B = \max(1 - \min(A, \max(1 - A, B)), B)$

Tableaux for L3

statements: $t \leq \varphi$, $\varphi \leq t$, $t \leq \varphi$, or $\varphi \leq t$, for $t \in \{\bot, u, \top\}$

Construction

A **tableau** for a formula φ is constructed as follows:

- start with $1 \nleq \varphi$
- choose a branch of the tree
- choose a statement σ on the branch
- choose a rule with head σ
- add it at the bottom of the branch
- repeat until every branch contains one of the following contradictions

 $\begin{array}{ll} \bot \nleq \varphi & s \leq t \text{ with } s \nleq t & s \leq \varphi \text{ and } t \nleq \varphi \text{ with } t \leq s \\ \varphi \And \top & s \nleq t \text{ with } s \leq t & \varphi \leq s \text{ and } \varphi \nleq t \text{ with } s \leq t \\ \end{array}$ where $s, t \in \{\bot, u, T\}$ and φ is a formula

Tableaux Rules

Intuitionistic Logic

The constructivists view

- We are not interested in truth but in provability.
- To prove the existence of an object is to give a concrete example. prove $\exists x \varphi(x) \iff \text{find } t \text{ with } \varphi(t)$
- ► To prove a **disjunction** is to prove one of the choices. prove $\varphi \lor \psi \iff$ prove φ or prove ψ

Goal

A variant of first-order logic that captures these ideas.

Boolean algebras

In classical logic the truth values form a boolean algebra with operations

 $\land, \lor, \neg, \top, \bot$

Properties of negation:

 $x \land \neg x = \bot$ $x \lor \neg x = \top$

Heyting algebras

In intuitionistic logic the truth values form instead a Heyting algebra with operations

 $\land, \ \lor, \ \rightarrow, \ \top, \ \bot$

Properties of implication:

 $z \le x \to y$ iff $z \land x \le y$

(that is $x \to y$ is the largest element satisfying $(x \to y) \land x \le y$)

$$x \wedge (x \to y) = x \wedge y \qquad \qquad x \to x = \top y \wedge (x \to x) = y \qquad \qquad x \to (y \wedge z) = (x \to y) \wedge (x \to z) .$$

Heyting algebras

In **intuitionistic logic** the **truth values** form instead a **Heyting algebra** with operations

 $\land, \ \lor, \ \rightarrow, \ \top, \ \bot$

Properties of implication:

 $z \le x \to y$ iff $z \land x \le y$

(that is $x \to y$ is the largest element satisfying $(x \to y) \land x \le y$)

$$x \wedge (x \to y) = x \wedge y \qquad x \to x = \top y \wedge (x \to x) = y \qquad x \to (y \wedge z) = (x \to y) \wedge (x \to z).$$

Negation $\neg x := x \rightarrow \bot$ satisfies $x \land \neg x = \bot$, but not $x \lor \neg x = \top$

Forcing Frames

Definition

Transition system $\mathfrak{S} = \langle S, \leq, (P_i)_{i \in I}, s_0 \rangle$ with one edge relation \leq that forms a **partial order**:

- reflexive $s \leq s$
- **transitive** $s \le t \le u$ implies $s \le u$
- anti-symmetric $s \le t$ and $t \le s$ implies s = t

The forcing relation

 \mathfrak{S} forcing frame, $s \in S$ state, φ formula

$s \Vdash P_i$:iff	$t \in P_i$ for all $t \ge s$	
$s\Vdash \varphi \wedge \psi$:iff	$s \Vdash \varphi$ and $s \Vdash \psi$	
$s\Vdash \varphi \vee \psi$:iff	$s \Vdash \varphi \text{ or } s \Vdash \psi$	
$s \Vdash \neg \varphi$:iff	$t \Vdash \varphi$ for all $t \ge s$	
$s \Vdash \varphi \to \psi$:iff	$t \Vdash \varphi$ implies $t \Vdash \psi$	for all $t \ge s$

The **truth value** of φ in \mathfrak{S} is

 $[\![\varphi]\!]_{\mathfrak{S}} \coloneqq \{s \in S \mid s \Vdash \varphi\},\$

which is **upwards-closed** with respect to \leq .

Intuition

Intuitionistic logic speaks about the **limit behaviour** of φ for large *s*.

 $\varphi \coloneqq P$

 $\varphi \coloneqq P$

 $\varphi \coloneqq \neg P$

 $\varphi \coloneqq \neg P$

 $\varphi \coloneqq P \vee \neg P$

 $\varphi \coloneqq P \vee \neg P$

 $\varphi \coloneqq Q \to P$

 $\varphi \coloneqq Q \to P$

Tableaux for Intuitionistic Logic

Statements

 $s \Vdash \varphi$ $s \nvDash \varphi$ $s \leq t$

s, t state labels, φ a formula

Rules

$$\begin{array}{c} |\forall A \rightarrow (B \rightarrow A) \\ & | \\ s \leq t \\ & | \\ t \mid \vdash A \\ & | \\ t \mid \vdash B \rightarrow A \\ & | \\ t \leq u \\ & | \\ t \leq u \\ & | \\ u \mid \vdash B \\ & | \\ u \mid \vdash A \\ & | \\ u \mid \vdash A \end{array}$$

$$\begin{array}{c} \exists x (\varphi \lor \psi) \rightarrow (\exists x \varphi \lor \exists x \psi \\ & | \\ s \leq t \\ & | \\ t \Vdash \exists x (\varphi \lor \psi) \\ t \vDash \exists x \varphi \lor \exists x \psi \\ & | \\ t \Vdash \exists x \varphi \lor \exists x \psi \\ & | \\ t \vDash \exists x \varphi \\ & | \\ t \vDash \exists x \psi \\ & | \\ t \vDash \forall c) \\ t \vDash \psi (c) \\ t \vDash \psi (c)$$

S

