Exercise 1 Consider the following formulae.
(a) $(A \leftrightarrow B) \rightarrow(\neg A \wedge C)$
(b) $(A \rightarrow B) \rightarrow C$
(c) $A \leftrightarrow B$
(d) $(A \rightarrow B) \leftrightarrow(A \rightarrow C)$
(e) $(A \vee B) \wedge(A \vee C)$
(f) $[A \rightarrow(B \vee \neg A)] \rightarrow(B \rightarrow A)$
(g) $[(A \vee B) \rightarrow(C \rightarrow A)] \leftrightarrow(A \vee B \vee C)$

For each of them
(1) use a truth table to determine if the formula is valid and/or satisfiable;
(2) convert the formula into CNF using the truth table;
(3) convert the formula into CNF using equivalence transformations instead;
(4) write the formula as a set of clauses.

Exercise 2 Which of the following formulae imply each other?
(a) $A \wedge B$
(b) $A \vee B$
(c) $A \rightarrow B$
(d) $A \leftrightarrow B$
(e) $\neg A \wedge \neg B$
(f) $\neg A$
(g) $\neg(A \rightarrow B)$

Exercise 3 We can encode n-bit numbers via an n-tuple of propositional variables A_{n-1}, \ldots, A_{0}.
(a) Write a formula $\varphi\left(A_{1}, A_{0}, B_{1}, B_{0}, C_{2}, C_{1}, C_{0}\right)$ for the addition of 2-bit numbers $(\bar{A}+\bar{B}=\bar{C})$.
(b) Write a formula $\varphi\left(A_{n-1}, \ldots, A_{0}, B_{n-1}, \ldots, B_{0}, C_{n}, \ldots, C_{o}\right)$ for the addition of n-bit numbers.

Exercise 4 Use the DPLL algorithm to determine whether the following formulae are satisfiable.
(a) $\neg[(A \rightarrow B) \leftrightarrow(A \rightarrow C)]$
(b) $(A \vee B \vee C) \wedge(B \vee D) \wedge(A \rightarrow D) \wedge(B \rightarrow A)$
(c) $(A \leftrightarrow B) \rightarrow(\neg A \wedge C)$
(d) $[A \rightarrow(B \vee \neg A)] \rightarrow(B \rightarrow A)$
$(\mathrm{e})[(A \vee B) \rightarrow(C \rightarrow A)] \leftrightarrow(A \vee B \vee C)$

Exercise 5 Use the resolution method to determine which of the following formulae are valid.
(a) $(A \wedge \neg B \wedge C) \vee(\neg A \wedge \neg B \wedge \neg C) \vee(B \wedge C) \vee(A \wedge \neg C) \vee(\neg A \wedge B \wedge \neg C) \vee(\neg A \wedge \neg B \wedge C)$
(b) $(A \wedge B) \vee(B \wedge C \wedge D) \vee(\neg A \wedge B) \vee(\neg C \wedge \neg D)$
(c) $(\neg A \wedge B \wedge \neg C) \vee(\neg B \wedge \neg C \wedge D) \vee(\neg C \wedge \neg D) \vee(A \wedge B) \vee(\neg A \wedge B \wedge C) \vee(\neg A \wedge C)$ $\vee(A \wedge \neg B \wedge C) \vee(A \wedge \neg B \wedge D)$

Exercise 6 Given a finite automaton \mathcal{A} and an input word w, write down a formula $\varphi_{\mathcal{A}, w}$ that is satisfiable if, and only if, the automaton \mathcal{A} accepts w.

Exercise 7 Construct the game for the following set of Horn-formulae and determine the winning regions.
$B \wedge C \wedge D \rightarrow A$
$C \wedge F \rightarrow B$
$A \wedge F \rightarrow C$
$D \rightarrow B$
$A \wedge B \rightarrow F$
$E \rightarrow A$
$D \wedge E \rightarrow B$
C
D

