

Ensembles For Anomaly Detection

A Brief Introduction

Tomas Kruty

Outline for Section 1

1. Anomaly Detection

- 1.1 Motivation
- 1.2 Local Outlier Factor (LOF)
- 1.3 Clustering-Based Outlier Rankings (OR_h)
- 1.4 Class Outliers: Distance-Based (CODB)

2. Ensembles

- 2.1 General Idea
- 2.2 Categorization
- 2.3 Proposed Ensembles
- 2.4 RF-OEX
- 2.5 Bibliography

Motivation

- Data cleansing
- Fraud detection
- Interesting event detection
- Medical diagnosis
- Law enforcement

Local Outlier Factor

- Based on local density of observation's neighborhood
- Core distance of point *p*
 - distance between p and it's k'th nearest neighbor
- Reachability distance between observations *p*1 and *p*2
 - maximum of core distance of p1 and the distance between p1 and p2
- Local reachability distance
 - inversely proportional to the average reachability distance of its k neighbors
- LOF of an observation is calculated as a function of it's local reachability distance

Clustering-Based Outlier Rankings

- uses a hierarchical agglomerative clustering algorithm
- uses the information about clustering process to determine outliers
- outliers will be more resistant to being merged than other observations
- the size difference between the group to which the outlier belongs and to which is being merged should be very large

Class Outliers: Distance-Based

- Class Outlier Mining
 - given a set of observations with class labels, find those that arouse suspicions, taking into account the class labels
- The Probability of the class label
 - the probability of the class label of the instance T with respect to the class labels of its K Nearest Neighbors
- Deviation
 - how much the instance T deviates from subset of observation with same class as T
- K-Distance
 - distance between the instance T and its K nearest neighbors
- $COF = K * PCL + (\alpha/Deviation) + (\beta * K-Distance)$

Outline for Section 2

1. Anomaly Detection

- 1.1 Motivation
- 1.2 Local Outlier Factor (LOF)
- 1.3 Clustering-Based Outlier Rankings (OR_h)
- 1.4 Class Outliers: Distance-Based (CODB)

2. Ensembles

- 2.1 General Idea
- 2.2 Categorization
- 2.3 Proposed Ensembles
- 2.4 RF-OEX
- 2.5 Bibliography

General Idea

- Method of combining multiple different algorithms (or different instances of an algorithm)
- Ensembles should provide more robust results
- Ensemble is responsible for combining the outputs of algorithms used in the ensemble

Categorization

by component independence

• Sequential ensembles

- set of algorithms are applied sequentially
- future applications of algorithm are affected by previous application
- result is either weighted combination of or last application of outlier analysis application
- Independent ensembles
 - different algorithms are applied to data
 - results obtained from different applications are independent
 - outputs from different algorithms are combined together for more robust outliers

Categorization

by component

- Voting-based
 - different algorithms vote on the output of the ensemble
 - simple approach is to assign each algorithm one vote but prioritization is possible
- Bagging-based
 - bootstrap aggregation or bagging for short
 - uses only one algorithm but multiple times each on different subset of the data - so called bags
 - bags can be created by taking a subset of observations or a subset of features
- Model-based
 - uses one dataset but multiple algorithms
 - the challenge of combining various outputs
 - normalization or outputs must take place

LOF Ensembles

- Building the ensemble:
 - different values of K
- Combining the outputs:
 - mean of outlier scores
 - maximum of outlier scores
 - voting on observations
 - weighted average of outlier scores

OR_h Ensembles

- Building the ensemble
 - different algorithms for clustering
 - different method for obtaining outlier score
 - bagging
- Combining the outputs
 - mean of outlyingness factor
 - maximum of outlyingness factor

CODB Ensembles

- Building the ensemble
 - different values of K
- Combining the outputs
 - mean of outlier scores
 - minimum of outlier scores

RF-OEX

- Ensemble method based on random forests
- Proximity to the members of the same class
 - inverse value is used, the higher proximity to observation's class the less of an outlier the given observation is
 - proximity to class C is computed as an aggregation of proximities to all observations from C
- Misclassification measure
 - similarity with members of different classes should increase observation's outlyingness
 - number of observations with different class in analyzed observation's close proximity
- Ambiguity measure
 - increase of importance of outliers that are far from all observations
- OF(p) =

 $OF_1(p)_{same-class} + OF_2(p)_{misclassification} + OF_3(p)_{ambiguity}$

Bibliography

- [1] Charu C. Aggarwal. *Outlier Analysis*. Springer International Publishing, 2016.
- [2] Luis Torgo. Data Mining with R: Learning with Case Studies, Second Edition. CRC Press, 2016.
- [3] N. Hewahi, and M. Saad. *Class outliers mining: Distance-based approach*. International Journal of Computer and Information Engineering, 2007.
- [4] Charu C. Aggarwal. *Outlier Ensembles: An Introduction*. Springer International Publishing, 2017.
- [5] Leona Nezvalova, Lubos Popelinsky, Luis Torgo, and Karel Vaculik. Class-based outlier detection: staying zombies or awaiting for resurrection?. KD Lab, FI MU BRNO, and F.Sci. U.Porto.