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“Evaluation is the key to
making real progress in
data mining’,

|Witten & Frank, 2005], p. 143
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Yet....

e Evaluation gives us a lot of, sometimes contradictory,
information. How do we make sense of it all?

e Evaluation standards differ from person to person and
discipline to discipline. How do we decide which
standards are right for us?

e Evaluation gives us support for a theory over another,
but rarely, if ever, certainty. So where does that leave
us?



Example |I: Which Classifier is better?
There are almost as many answers as there are
performance measures! (e.g., UCI Breast Cancer)

--

717 4534 4 48.11
C4.5 - 4324 .27 .04 74 27 4 - 34.28
3NN 724 5101 .32 1 .56 32 41 .63 43.37
Ripp =7 4494 37 14 52 37 43 .0 22.34
SVM  69.6 - .33 15 48 .33 39 .59 -
Bagg 67.8 4518 .17 1 4 17 .23 .63 11.30
Boost 70.3 4329 .42 18 5 42 46 7 34.48

RanF 69.23 .47 .33 15 48 .33 -- 20.78

. acceptable contradictions
. questionable contradictions 4



Example I: Which Classifier is better?
Ranking the results
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Example II: What’s wrong with our results?

A new algorithm was designed based on data that had
been provided to us by the National Institute of Health
(NIH). [Wang and Japkowicz, 2008, 2010]

According to the standard evaluation practices in machine
learning, we found our results to be significantly better
than the state-of-the-art.

The conference version of the paper received a best paper
award and the work is receiving a bit of attention in the ML
community (35+ citations)

NIH would not consider our algorithm because it was
probably not significantly better (if at all) than others as
they felt we had not conducted our evaluation according to
their standards. 6
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Example Ill: What do our results mean?

In an experiment comparing the accuracy performance of
eight classifiers on ten domains, we concluded that One-
Way Repeated-Measure ANOVA rejects the hypothesis
that the eight classifiers perform similarly on the ten
domains considered at the 95% significance level
|Japkowicz & Shah, 2011}, p. 273.

Can we be sure of our results?
e What if we are in the 5% not vouched for by the statistical test?

e Was the ANOVA test truly applicable to our specific data? Is there
any way to verify that?

e Can we have any 100% guarantee on our results?
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Purpose of the tutorial

To give the audience an appreciation for the complexity
and uncertainty of evaluation.

To discuss the different aspects of evaluation and to
present an overview of the issues that come up in their
context and what the possible remedies may be.

To present some of the newer lesser known results in
classifier evaluation.

Finally, to direct the audience to some available, easy-to-

use, resources that can help improve the robustness of
evaluation in the field.



Book on which the tutorial is based

P

Evaluating Learning Algorithms:

A Classification Perspective
Nathalie Japkowicz & Mohak Shah
Cambridge University Press, 2011

Evaluating
Learning Algorithms

A Classification Perspective

Review:

"This treasure-trove of a book covers the
important topic of performance evaluation
of machine learning algorithms in a very
comprehensive and lucid fashion. As
Japkowicz and Shah point out, performance
evaluation is too often a formulaic affair in
machine learning, with scant appreciation
of the appropriateness of the evaluation
methods used or the interpretation of the
results obtained. This book makes
significant steps in rectifying this situation
by ]l)roviding a reasoned catalogue of
evaluation measures and methods, written
specifically for a machine learning audience
and accompanied by concrete machine
learning examples and implementations in
R. This is truly a book to be savoured by
machine learning professionals, and
required reading for Ph.D students."

Peter A. Flach, University of Bristol
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: The main steps of evaluation

The Classifier Evaluation Framework

Choice of Learning Algorithm(s)

v
Datasets Selection |-

e
/a
’I
’

| 2 & e
Performance Measure > Error-Estimation/ »| Statistical Test

of Interest - Sampling Method /

Perform Evaluation

11— » 2: knowledge of 1 is necessary for 2

g P e » 2 : feedback from 1 should be used to adjust 2

10
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What these steps depend on

These steps depend on the purpose of the evaluation:

e Comparison of a new algorithm to other (may be generic or
application-specific) classifiers on a specific domain (e.g., when
proposing a novel learning algorithm)

e Comparison of a new generic algorithm to other generic ones on a
set of benchmark domains (e.g. to demonstrate general
effectiveness of the new approach against other approaches)

e Characterization of generic classifiers on benchmarks domains (e.g.
to study the algorithms' behavior on general domains for
subsequent use)

e Comparison of multiple classifiers on a specific domain (e.g. to find
the best algorithm for a given application task)



Outline of the tutorial:

Performance measures

Error Estimation/Resampling

Statistical Significance Testing

Data Set Selection and Evaluation Benchmark Design

Available resources

12
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Performance Measures
Outline

Ontology

Confusion Matrix Based Measures

Graphical Measures:
e ROC Analysis and AUC, Cost Curves

e Recent Developments on the ROC Front: Smooth ROC
Curves, the H Measure

e Other Curves: PR Curves, lift, etc..
Probabilistic Measures

Others: qualitative measures, combinations
frameworks, visualization, agreement statistics

14



“Overview of Performance Measures

All
measures
| — |
Confusion Matrix Additional Info Alternate
(Classifier Uncertainty Information
Deterministic Classifiers Scoring Continuous and
Classifiers Prob. Classifiers
(Reliability metrics)
Multi-class Single Class
Focus Focus
Graniicsl | [ Samma Distance/ Information
meai.ures Statisticrz oL Theoratic
measures Measures
ROC Curves AUC
No Chance PR Curves || Hmeasure | [rmsE KL divergence
Chance- Correction DET Curves K&B IR
Correction Lift Charts o
Cost Curves
Interestingness
IP/EP Rate Comprehensibility
Accuracy | Cohen's Kappa || Precision/Recall Multi-criteria
Error Rate | Fleiss Kappa Sens./Spec.
F-measure
Geom. Mean
Dice 15
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Confusion Matrix-Based Performance

Measures
Multi-Class Focus:

True class > Accuracy = (TP+TN)/(P
}{ypothesized| Pos Neg +N)
class \Y
Single-Class Focus:
Yes 1P FP Precision = TP/(TP
No FN TN i
Recall = TP/P
P=TP+FN N=FP+TN Fallout = FP /N
Sensitivity = TP/(TP
A Confusion Matrix +FN)

Specificity = TN/(FP
+TN)

16
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Aliases and other measures
Accuracy =1 (or 100%) - Error rate
Recall = TPR = Hit rate = Sensitivity
Fallout = FPR = False Alarm rate
Precision = Positive Predictive Value (PPV)

Negative Predictive Value (NPV) = TN/(TN+FN)

Likelihood Ratios:
e LR+ = Sensitivity/(1-Specificity)
e LR- = (1-Sensitivity)/Specificity

17



’/Paﬁf Measures and Compounded
Measures

Precision / Recall

Sensitivity / Specificity

Likelihood Ratios (LR+ and LR-)
Positive / Negative Predictive Values

F-Measure:
e Fo = [(1+ o) (Precision x Recall)]/ =1, 2, 0.5
[(o x Precision) + Recall]

G-Mean: 2-class version single-class version
e G-Mean = Sqrt(TPR x TNR) or Sqrt(TPR x Precision)

18



.-

Skew and Cost considerations

Skew-Sensitive Assessments: e.g., Class Ratios
e Ratio+ = (TP + FN)/(FP + TN)
e Ratio- = (FP + TN)/(TP + FN)
e TPR can be weighted by Ratio+ and TNR can be
weighted by Ratio-
Asymmetric Misclassification Costs:
o If the costs are known,

« Weight each non-diagonal entries of the confusion matrix by
the appropriate misclassification costs

« Compute the weighted version of any previously discussed
evaluation measure.

19
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Some issues with performance measures

/

L

True class 2

True class =2

Pos Neg Pos Neg
Yes 200 100 Yes 400 300
No 300 400 No 100 200

P=500 |N=500 P=500 |N=500

B Both classifiers obtain 60% accuracy

B They exhibit very different behaviours:
E On the left: weak positive recognition rate/strong

negative recognition rate

E On the right: strong positive recognition rate/weak

negative recognition rate

20
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Some issues with performance measures (cont’d)

Trueclass > | pyq Ne o True class 2 | pyq Neg

Yes 500 5 Yes 450 1

No 0 0 No 50 4
P=500 |N=5 P=500 [N=5

B The classifier on the left obtains 99.01% accuracy

while the classifier on the right obtains 89.9%

B Yet, the classifier on the right is much more
sophisticated than the classifier on the left, which just
labels everything as positive and misses all the negative
examples.

21
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Some issues with performance measures (cont’d)
Lo class 2 Pos Neg Truedass 2 | Pos Neg
Yes 200 100 Yes 200 100
No 300 400 No 300 0

P=500 |N=500 P=500 [N=100

» Both classifiers obtain the same precision and recall values
of 66.7% and 40% (Note: the data sets are different)

= They exhibit very different behaviours:
» Same positive recognition rate

= Extremely different negative recognition rate: strong on
the left / nil on the right

= Note: Accuracy has no problem catching this! -
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Some issues with performance measures (cont’d)

This and similar analyses reveal that each

performance measure will convey some information
and hide other.

Therefore, there is an information trade-off carried
through the different metrics.

A practitioner has to choose, quite carefully, the
quantity s/he is interested in monitoring, while
keeping in mind that other values matter as well.

Classifiers may rank differently depending on the
metrics along which they are being compared.

23
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Graphical Measures

ROC Analysis, AUC, Cost Curves

Many researchers have now adopted the AUC (the area
under the ROC Curve) to evaluate their results.

The principal advantage of the AUC is that it is more
robust than Accuracy in class imbalanced situations where
the default classifier that always outputs the most
probable label yields exceedingly good estimates of
performance.

The AUC takes the class distribution into consideration
and, therefore, gives more weight to correct classification

of the minority class, thus outputting fairer results. -
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ROC Analysis is applicable to scoring rather

than merely deterministic classifiers

ROC graphs are insensitive to class imbalances

(or skew) since they consider the TPR and FPR
independently and do not take into account
the class distribution. They, therefore, give very
nice overall comparisons of two systems.

However, practically speaking, ROC graphs

ignore the skew which the performance

O\
R
\
\

measures of interest (pmi) usually takes into

consideration. Therefore, at model selection

time, it is wise to consider isometrics for pmi

ue Positive Rate

S 2 & & S & &
\

— O\ .

— E

— s £
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\ 4
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which are lines in the ROC space along which

the same performance value is obtained for
that pmi. Different skew ratios are represented
by different isolines, making the selection of
the optimal operating point quite easy.

25
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AUC

ROC Analysis allows a user to visualize the performance of classifiers
over their operating ranges.

However, it does not allow the quantification of this analysis, which
would make comparisons between classifiers easier.

The Area Under the ROC Curve (AUC) allows such a quantification: it
represents the performance of the classifier averaged over all the
possible cost ratios.

The AUC can also be interpreted as the probability of the classifier
assigning a higher rank to a randomly chosen positive example than to a
randomly chosen negative example

Using the second interpretation, the AUC can be estimated as follows:

Tich (R =)
AVC = ol




True Positive Rate

Cost Curves

7
P

04 05
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ROC Curves only tell
us that sometimes
one classifier is
preferable over the
other

Error
Rate

Classifiers
A at different
thresholds

Cost-curves are more practical than ROC
curves because they tell us for what class
probabilities one classifier is preferable

over the other.

4 Classifier that

is always wrong

N e
R, Positive //
g Trivial 7
k2 Classifier P _
< 5 Negative
7 ..
Ry B Trivial
< > =
S s Classifier
~ 7
~ 7
7
\\ 7
~N 7
T //
\\ //
e N 7 o 2
Classifier A1 X Classifier B2 Classifiers

B at different
thresholds

0.25

0.4 i
P(+), Probability of an example
Being from the Positive Class
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Recent Developments |: Smooth ROC Curves (smROC)
[Klement, Flach, Japkowicz & Matwin, ECML2011]

ROC Analysis visualizes the ranking
performance of classifiers but ignores

any kind of scoring information.

Scores are important as they tell us
whether the difference between two
rankings is large or small, but they

are difficult to integrate because
unlike probabilities, each scoring
system is different from one clas

to the next and their integr ,.|

is not obvious.
smROC extends the ROC curve

to include normalized scores as ..{

smoothing weights added to its
segments.

%

smROC was shown to capture
the similarity between similar
classification models better than
ROC and that it can capture
difference between classification

models that ROC is barely
sensitive to, if at all.

0.5

ROC

e

— Nalve Bayss
PET

0.25

0.5

0.75 1

0.75¢

0.5

0.25H

I

smROC

— Nalve Bayes
PET

0.25

0.5 075
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Recent Developments Il: The H Measure |

A criticism of the AUC was given by [Hand, 2009]. The argument
goes along the following lines:

The misclassification cost distributions (and hence the skew-
ratio distributions) used by the AUC are different for different
classifiers. Therefore, we may be comparing apples and oranges
as the AUC may give more weight to misclassifying a point by
classifier A than it does by classifier B

To address this problem, [Hand, 2009] proposed the H-Measure.

In essence, The H-measure allows the user to select a cost-weight
function that is equal for all the classifiers under comparison and
thus allows for fairer comparisons.

29



Recent Developments II:
The H Measure I

|Flach, Hernandez-Orallo and Ferri, ICML2011] argued that

e [Hand2009]’s criticism holds when the AUC is interpreted as a
classification measure but not when it is interpreted as a pure
ranking measure.

e When [Hand’2009]’s criticism holds, the problem occurs only if the
threshold used to construct the ROC curve are assumed to be optimal.

¢ When constructing the ROC curve using all the points in the data set
as thresholds rather than only optimal ones, then the AUC measure
can be shown to be coherent and the H-Measure unnecessary, at least
from a theoretical point of view.

e The H-Measure is a linear transformation of the value that the area
under the Cost-Curve would produce.

30
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Other Curves

Other research communities have produced and
used graphical evaluation techniques similar to

ROC Curves.

e Lift charts plot the number of true positives versus the overall
number of examples in the data sets that was considered for the
specific true positive number on the vertical axis.

e PR curves plot the precision as a function of its recall.

e DET curves are like ROC curves, but plot the FNR rather than
the TPR on the vertical axis. They are also typically log-scaled.

e Relative Superiority Graphs are more akin to Cost-Curves as
they consider costs. They map the ratios of costs into the [0,1]
interval.

31
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Probabilistic Measures |: RMSE

The Root-Mean Squared Error (RMSE) is usually used
for regression, but can also be used with probabilistic
classifiers. The formula for the RMSE is:

RMSE(f) = sqrt( 1/m Z;_™(f(x;) - y;)?))
where m is the number of test examples, f(x;), the classifier’s
probabilistic output on x. and y, the actual label.

Eﬂ- (f(x) - )*

0025 RMSE(f) = sqrt(1/5 * (.0025+.36+.04+.5625+.01))

: L 6 = sqrt(0.975/5) = 0.4416

3 1 .04

4 75 0 5625

5 .9 1 .01 32
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Probabilistic Measures Il:
Information Score

-

Kononenko and Bratko’s Information Score assumes a prior P(y) on
the labels. This could be estimated by the class distribution of the
training data. The output (posterior probability) of a probabilistic
classifier is P(y|f), where f'is the classifier. I(a) is the indicator

function.

IS(x) =

I(P(y|f) = P(y)) * (-log(P(y))+log(P(y|f)) +
+ I(P(y|f) < P(y)) * (- log(1-P(y))+log(1-P(y|f)))

—1/m Y m(T1Q(v ) P(y=1)=3/5=0.6

P(y=0) = 2/5 = 0.4

1S(x;) = 1 * (-log(.6) + log(.95)) +

.66
= ° 0 * (log(.4) + log).05))
2 .6 0 0 = 0.66
3 1 42
1S,,,= 1/5 (0.66+0+.42+.32+.59)
4 75 0 32 e
=0.40
5 -9 1 -59 33
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Other Measures I:
A Multi-Criteria Measure — The Efficiency Method

The efficiency method is a framework for combining
various measures including qualitative metrics, such
as interestingness. It considers the positive metrics for
which higher values are desirable (e.g, accuracy) and
the negative metrics for which lower values are
desirable (e.g., computational time).

€5(f)= Z;w;pm;*(f) / Zwnm;(f)

pm;* are the positive metrics and nm;” are the negative metrics. The w;’s
and w;'s have to be determined and a solution is proposed that uses

linear programming.

34
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Other Measures II:
Visualization-Based Measure [Japkowicz, Sanghi, Tischer, ECML’08, ISAIM’08]

-

* Classifier evaluation can be viewed as a problem of
analyzing high-dimensional data.

* The performance measures currently used are but one
class of projections that can be applied to these data.

* Why not apply other (standard or not) projections to
the data with various kinds (standard or not) distance
measures?

35
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f the Framework
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Hlustration on Multiple domains:

Breast Cancer, Labor and Liver

BreastCancer Labour Liver CM

il Acc. |F- AUC
180F Meas.
1601
o NB BC: [717 |48 7
La: 895 | .92 97
T Li: |554 |.6 64
o Avg: 722 | .67 s
T SMO BC: |696 | .39 59
L ar i igo sitig) 87
Li: 583 | .014 5
Avg: |7246 | 44 .65
L e Boost. BC: | 70.3 46 %)
La: 87.7 91 87
. . . Li: 66.1 | .534 68
Abnormality detection with our Avg: | 747 | 64 75

new approach is a lot easier and
accurate than it is, when relying on Accuracy, Also, our new approach
F-Measure, or AUC listings on each domain Allows us to mix binary
or their average on all domains. and multi-class domains.
Averaging does not! 37
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Other Measures llI:

Accounting for chance and evaluating under imprecise
labeling

Measures considered so far assume existence of
ground truth labels (against which, for instance,
accuracy is measured)

In the absence of ground truth, typically experts label
the instances

39



Multiple Annotations—

40



2 Questions of inter ——
Q 3% e -

4 Inter-expert agreement:
Overall Agreement
of the group

Classifier Agreement
Against the group

v

41




Such measurements are also desired when

Assessing a classifier in a skewed class setting
Assessing a classifier against expert labeling

There are reasons to believe that bias has been
introduced in the labeling process (say, due to class

imbalance, asymmetric representativeness of classes
in the data,...)

Agreement statistic aim to address this by accounting
for chance agreements (coincidental concordances) +



Coincidental concordances (Natural Propensities) need to be—=
aceounted for

R1: 1526 R2: 2484 R3: 1671

R6:1891



General Agreement Statistic

Es(A) — E(A)
maxg(A) — E(A)

KR =

44
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‘General Agreement Statistic

/ Agreement measure

Es(A) —E(A)

maxg(A)]<E(A) >
/ \ Chance Agreement

h:_

~

Maximum Achievable
Agreement

Examples: Cohen’s kappa, Fleiss Kappa, Scott’s pi, ICC...



Multiple raters over multiple classes

Various generalizations to estimate inter-rater agreement in general
multi-class multi-rater scenario
e E.g., Fleiss kappa (Fleiss 1971); ICC, Scott’s pi; (Vanbelle and Albert, 2009);

e Typically relying on marginalization argument (fixed number of raters assumed
to be sampled from a pool of raters to label each instance)

e Recently generalization for the fixed rater scenarios have been proposed (kg
measure (Shah, 2011)) to address this

For assessing agreement against a group of raters

e Typically consensus argument (deterministic label set formed via majority vote
for evaluation and the classifier is evaluated against this label set) or
marginalization based measures

* Issues with these argument were highlighted for fixed rater setting (Shah, 2011)

« A novel measure, the S measure, has been proposed to address this

46



Error Estimation/
Resampling




P — %

Se we decided on a performance measure.

How do we estimate it in an unbiased manner?

What if we had all the data?

e Re-substitution: Overly optimistic (best performance
achieved with complete over-fit)

Which factors affect such estimation choices?
e Sample Size/Domains

e Random variations: in training set, testing set, learning
algorithms, class-noise

48
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Hold-out approach

Set aside a separate test set T. Estimate the empirical risk:

Re(f) = / L(y, fs(x))dD(x, )

Advantages
e independence from training set
e Generalization behavior can be characterized
e Estimates can be obtained for any classifier

49



Hold-out approach

Confidence intervals can be found too (based on
binomial approximation):

}RT(f)—R( <t15_e_\/—ln

2m/’

\/

50
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A Tighter bound

Based on binomial inversion:

Pry..pm(R(f) < Bin(m, \,6)) > 1 -6

More realistic than asymptotic Gaussian assumption
(1 £ 20)

51



Binomial vs. Gaussian assumptions

* B, and B, shows binomial lower and upper bounds

-

* (I, and CI, shod lower and upper confidence intervals
based on Gaussian assumption

Data-Set A Ry 3, 3, 1, i,
SVM 0.352 | 0.235 | 0.376 -0.574 1.278
Adan 0.291 0.225 | 0.364 -0.620 1.202
DT 0.325 | 0.256 | 0.400 -0.614 1.264

I3upu
DL 0.325 | 0.256 | 0.400 -0.614 1.264
NB 0.4 0.326 | 0.476 -0.582 1.382
SCM 0.377 | 0.305 | 0.453 -0.595 1.349
SVM 0.183 | 0.141 0.231 -0.592 | 0.958
Adan 0.17 0.129 | 0.217 -0.582 | 0.922

. DT 0.13 0.094 | 0.173 -0.543 | 0.803

Credit
DL 0.193 | 0.150 | 0.242 -0.598 | 0.984
NB 0.2 0.156 | 0.249 -0.603 1.003
SCM 0.19 0.147 | 0.239 -0.596 | 0.97

52



Binomial vs. Gaussian assumptions

* B, and B, shows binomial lower and upper bounds

* (I, and CI, shod lower and upper confidence intervals
based on Gaussian assumption

Data-Set A Ry I3 B,
SVM | 0.352 ] 0.235 | 0.376 -0.5%7¢
Adan 0.291 0.225 | 0.364 -0.620
DT 0.325 | 0.256 | 0.400 -0.614
Bupu
DL 0.325 | 0.256 | 0.400 -0.614
NB 0.4 0.326 | 0.476 -0.582
SCM 0.377 | 0.305 | 0.453 -0.595
SVM 0.183 | 0.141 0.231 -0.592
Adan 0.17 0.129 | 0.217 -0.582 | 0.922
. DT 0.13 0.094 | 0.173 -0.543 | 0.803
Credit
DL 0.193 | 0.150 | 0.242 -0.598 | 0.984
NB 0.2 0.156 | 0.249 -0.603 1.003
SCM 0.19 0.147 | 0.239 -0.596 | 0.97

53



Hold-out sample size requirements

* The bound:

|Rr(f) — R(f)| <t 6—6—\/

2m’

gives

54
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Hold-out sample size bound
* The bound:

[Rr(f) — R(f)| < t1s =€ = \/—m

gives

PRERNG

This sample size bound grows very quickly with € and 6

95



The need for re-sampling

Too few training examples -> learning a poor classifier
Too few test examples -> erroneous error estimates

Hence: Resampling

e Allows for accurate performance estimates while
allowing the algorithm to train on most data examples

e Allows for closer duplication conditions

56



Whatimplicitly guides re=sampling:——

a quick look into relationship with Bias-variance
behavior

Bias-Variance analysis helps understand the behavior of
learning algorithms

In the classification case:

 Bias: difference between the most frequent prediction of the
algorithm and the optimal label of the examples

e Variance: Degree of algorithm’s divergence from its most probable
(average) prediction in response to variations in training set

Hence, bias is independent of the training set while
variance isn’t

S57
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Whatimplicitly guides re=ssampling——

a quick look into relationship with Bias-variance
behavior

Having too few examples in the training set affects the bias
of algorithm by making its average prediction unreliable

Having too few examples in test set results in high
variance

Hence, the choice of resampling can introduce different

limitations on the bias and variance estimates of an
algorithm and hence on the reliability of error estimates

58



An ontology of error estimation techniques

All Data
Regimen
No .
Re:samgling Re-sampling
|
Simple Multiple
Hel o Re-sampling Re-sampling
l 1 1
R C Rand Randomi fenre
e- ross- andom : andomi- k-fold
B
substitution Validation Sub-Sampling SOBHAKPHIE zation v?}’;::-
alidation
[ : 1 [ 1 [ 1
on-Stratifie Stratified 5 ' —— 5 .
k-fold k-fold eave- : ermutation
roae Cliin One-Out EO Bootstrap Bootstrap Test 5x2CV 10x10CV

Validation Validation
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k-fold Cross-Validation

a - | | |
o2 [N I O ) O

oo R N e

¢ | I I N
- : training data subset

. testing data subset

In Cross-Validation, the data set is divided into k folds and at each iteration, a
different fold is reserved for testing while all the others used for training the
classifiers.

60



Stimple Resampling:

Some variations of Cross-Validation

Stratified k-fold Cross-Validation:

e Maintain the class distribution from the original dataset
when forming the k-fold CV subsets

e useful when the class-distribution of the data is
imbalanced/skewed.

Leave-One-Out

e This is the extreme case of k-fold CV where each subset
is of size 1.

e Also known a Jackknife estimate

61
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Observations

k-fold CV is arguable the best known and most commonly
used resampling technique

e With k of reasonable size, less computer intensive than Leave-
One-Out

e Easy to apply

In all the variants, the testing sets are independent of one
another, as required, by many statistical testing methods

e but the training sets are highly overlapping. This can affect the bias
of the error estimates (generally mitigated for large dataset sizes).

Results in averaged estimate over k different classifiers
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Observations

Leave-One-Out can result in estimates with high variance
given that the testing folds contains only one example

e On the other hand, the classifier is practically unbiased since each
training fold contains almost all the data

Leave-One-Out can be quite effective for moderate dataset
sizes

e For small datasets, the estimates have high variance while for large
datasets application becomes too computer-intensive

Leave-One-Out can also be beneficial, compared to k-fold
CV, when
e There is wide dispersion of data distribution

e Data set contains extreme values
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Limitations of Simple Resampling

Do not estimate the risk of a classifier but rather expected
risk of algorithm over the size of partitions

e While stability of estimates can give insight into robustness
of algorithm, classifier comparisons in fact compare the
averaged estimates (and not individual classifiers)

Providing rigorous guarantees is quite problematic

e No confidence intervals can be established (unlike, say, hold-
out method)

e Even under normality assumption, the standard deviation at
best conveys the uncertainty in estimates
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Multiple Resampling:
Bootstrapping

Attempts to answer: What can be done when data is
too small for application of k-fold CV or Leave-One-
Out?

Assumes that the available sample is representative

Creates a large number of new sample by drawing
with replacement
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_ =
Multiple Resampling:

€0 Bootstrapping

Given a data D of size m, create k bootstrap samples
B,, each of of size m by sampling with replacement

At each iteration i:

e B. represents the training set while the test set contains
single copy of examples in D that are not present in B,

e Train a classifier on Bi and test on the test set to obtain
error estimate €o.

Average over €0;’s to obtain €0 estimate
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Multiple Resampling:

€0 Bootstrapping

In every iteration the probability of an example not
being chosen after m samples is:
1 1 N
(1 — f)7n ~ — ~ (.368

I €

Hence, average distinct examples in the training set is
m(1-0.368)m = 0.632m

The €0 measure can hence be pessimistic since in
each run the classifier is typically trained on about
63.2% of data 67



ﬂfﬁple Resampling:
e632 Bootstrapping

e632 estimate corrects for this pessimistic bias by
taking into account the optimistic bias of
resubstitution error over the remaining 0.368 fraction:

€632 = 0.632-¢0+ 0.368 - err(f)
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Discussion

Bootstrap can be useful when datasets are too small

e In these cases, the estimates can also have low variance owing to
(artificially) increased data size

go: effective in cases of very high true error rate; has low
variance than k-fold CV but more biased

e632 (owing to correction it makes): effective over small
true error rates

An interesting observation: these error estimates can be
algorithm-dependent

e e.g., Bootstrap can be a poor estimator for algorithms such as
nearest neighbor or FOIL that do not benefit from duplicate
instances 69
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Multiple Resampling:

other approaches

Randomization

e Over labels: Assess the dependence of algorithm on actual label
assignment (as opposed to obtaining similar classifier on chance
assignment)

e Over Samples (Permutation): Assess the stability of estimates over
different re-orderings of the data

Multiple trials of simple resampling
e Potentially Higher replicability and more stable estimates

e Multiple runs (how many?): 5x2 cv, 10x10 cv (main motivation is
comparison of algorithms)
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mo watch out when selecting error
estimation method

Domain (e.g., for data distribution, dispersion)
Dataset Size

Bias-Variance dependence

(Expected) true error rate

Type of learning algorithms to be evaluated (e.g. can be robust to, say,
permutation test; or do not benefit over bootstrapping)

Computational Complexity

The relations between the evaluation methods, whether statistically significantly
different or not, varies with data quality. Therefore, one cannot replace one test
with another, and only evaluation methods appropriate for the context may be
used.

Reich and Barai (1999, Pg 11)
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Statistical Significance
Testing
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Statistical Significance Testing

Error estimation techniques allows us to obtain an
estimate of the desired performance metric(s) on
different classifiers

A difference is seen between the metric values over
classifiers
Questions

e Can the difference be attributed to real characteristics
of the algorithms?

e Can the observed difference(s) be merely coincidental
concordances?
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Statistical Significance Testing

Statistical Significance Testing can enable ascertaining
whether the observed results are statistically significant
(within certain constraints)

We primarily focus on Null Hypothesis Significance
Testing (NHST) typically w.r.t.:

e Evaluate algorithm A of interest against other algorithms on a
specific problem

e Evaluate generic capabilities of A against other algorithms on
benchmark datasets

e Evaluating performance of multiple classifiers on benchmark
datasets or a specific problem of interest
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NHST

State a null hypothesis

e Usually the opposite of what we wish to test (for example, classifiers A and B
perform equivalently)

Choose a suitable statistical test and statistic that will be used to
(possibly) reject the null hypothesis

Choose a critical region for the statistic to lie in that is extreme enough
for the null hypothesis to be rejected.

Calculate the test statistic from the data

If the test statistic lies in the critical region: reject the null hypothesis.
* If not, we fail to reject the null hypothesis, but do not accept it either.

Rejecting the null hypothesis gives us some confidence in the belief that
our observations did not occur merely by chance.
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Choosing a Statistical Test

There are several aspects to consider when choosing a
statistical test.
e What kind of problem is being handled?

* Whether we have enough information about the underlying
distributions of the classifiers’ results to apply a parametric test?

Statistical tests considered can be categorized by the task
they address, i.e., comparing

e 2 algorithms on a single domain

e 2 algorithms on several domains

e multiple algorithms on multiple domains
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Issues with hypothesis testing

NHST never constitutes a proof that our observation is valid

Some researchers (Drummond, 2006; Demsar, 2008) have pointed out that
NHST:

e overvalues the results; and

e limits the search for novel ideas (owing to excessive, often unwarranted,
confidence in the results)

NHST outcomes are prone to misinterpretation

* Rejecting null hypothesis with confidence p does not signify that the
performance-difference holds with probability 1-p

e 1-p in fact denotes the likelihood of evidence from the experiment being
correct if the difference indeed exists

Given enough data, a statistically significant difference can always be
shown
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 Issues with hypothesls festing: "
~ But NHST can still be helpful

NHST never constitutes a proof that our observation is valid (but provides
added concrete support to observations)

Some researchers (Drummond, 2006; Demsar, 2008) have pointed out that
NHST:

e overvalues the results; and

e limits the search for novel ideas (owing to excessive, often unwarranted,
confidence in the results)

NHST outcomes are prone to misinterpretation (to which a better
sensitization is necessary)

Given enough data, a statistically significant difference can always be
shown

The impossibility to reject the null hypothesis while using a reasonable effect
size is telling
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An overview of representative tests

Repeated Measure
One—way ANOVA

Tukey Post—hoc Bonferroni-Dunn Nemenyi
Test Post—hoc Test Test

Parametric and
Parametric Test Non—Parametric 79
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Parametric vs. Non-parametric tests

All Machine Leaming
& Data Mining problems
2 Algonthms 2 Algonthms Multiple Algorithms
1 Domam Multiple Domams Multiple Domaims

Repeated Measure

One—way ANOVA

Tukey Post—hoc Bonferroni-Dunn Nemenyi
Test Post—hoc Test Test

Make assumptions on distribution of
population (i.e., error estimates);

typically more powerful than non-\ R
parametric counterparts Non-Parametric - ~
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Tests covered in this tutorial

Repeated Measure
One—way ANOVA

Tukey Post—hoc Bonferroni-Dunn Nemenyi
Test Post—hoc Test Test

Parametric and
Parametric Test Non—Parametric 81
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Comparing 2 algorithms on a single domain:

t-test

Arguably, one of the most widely used statistical tests

Comes in various flavors (addressing different experimental settings)

In our case: two matched samples t-test

e to compare performances of two classifiers applied to the same dataset
with matching randomizations and partitions

Measures if the difference between two means (mean value of
performance measures, e.g., error rate) is meaningful

Null hypothesis: the two samples (performance measures of two
classifiers over the dataset) come from the same population

82



~ Comparing 2 algorithms on a single domain:
t-test

o The t-statistic:

\/7_7» L e number of trials

* where

d = pm(f1) —pm(fo)

o

Average Performance
measure, e.g., error rate

of classifier f,
83
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Comparing 2 algorithms on a single domain:

t-test: lllustration

We apply C4.5 and Naive Bayes (NB) on the Labor dataset (from UCI
repository)

* 10 runs of 10-fold CV (maintaining same training and testing folds across
algorithms).

e The result of each 10-fold CV is considered a single result. Hence, each run
of 10-fold CV is a different trial. Consequently n=10

e d—0 0.1526—0 |
t = —5— = —5omoss — — 5-U340
Vn V10

Referring to the t-test table, for n-1=9 degrees of freedom, we can
reject the null hypothesis at 0.001 significance level (for which the
observed t-value should be greater than 4.781)
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Effect size

t-test measured the effect (i.e., the different in the sample means is
indeed statistically significant) but not the size of this effect (i.e., the
extent to which this difference is practically important)

Statistics offers many methods to determine this effect size including
Pearson’s correlation coefficient, Hedges’ G, etc.

In the case of t-test, we use: Cohen’s d statistic

_ pm(fy) —Pm(f2)

dcoh.en —

where

Pooled standard
deviation estimate



Effect size

A typical interpretation proposed by Cohen for effect size was the
following discrete scale:

e A value of about 0.2 or 0.3 : small effect, but probably meaningful
e =~0.5: medium effect that is noticeable

e >0.8: large effect

In the case of Labor dataset example, we have:

0.2175 — 0.0649
dcohexn — — 3.4381
\/0.0026&0.00133
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Co/mparing 2 algoerithms on'asingle ain:
t-test: so far so good; but what about
Assumptions made by t-test?

Assumptions
The Normality or pseudo-normality of populations
The randomness of samples (representativeness)
Equal Variances of the population

Let’s see if these assumptions hold in our case of Labor dataset:

Normality: we may assume pseudo-normality since each trial
eventually tests the algorithms on each of 57 instances (note however,
we compare averaged estimates)

Randomness: Data was collected in 1987-1988. All the collective
agreements were collected. No reason to assume this to be non-
representative



/Ccmparing s algefi%hWFr\a/ih:
~ t-test: so far so good; but what about
Assumptions made by t-test?

However,

The sample variances cannot be

considered equal

We also ignored: correlated
measurement effect (due to
overlapping training sets) resulting in
higher Type I error.

Were we warranted to use t-test?

Probably Not (even though t-test is

quite robust over some assumptions).
e Other variations of t-test (e.g.,

Welch’s t-test)

e McNemar’s test (non-parametric)
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~ Comparing 2 algorithms on a single domain:

McNemar’s test

Non-parametric counterpart to t-test

Computers the following contingency matrix

Classifier fo

Classifier f;

0

1

0 1
MC MC

€00 Co1
MC MC

10 €11

o here denotes misclassification by concerned classifier: i.e.,

e c,, denotes the number of instances misclassified by both f and f,

e C, denotes the number of instances correctly classified by f, but not by f,
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Comparing 2 algorithms on a single domain:

McNemar’s test
* Null hypothesis

AIC AIC _ '\IC
Co1 = Cio = Cpull

e McNemar’s statistic

XMeceNemar — ,]Wc

v : 2 ] ]
» distributed approximately as X~ if Cj UC + CUC is greater than 20

* To reject the null hypothesis: X?\.chemar should be greater than X%,l—a
for desired o (typically 0.05)
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~ Comparing 2 algorithms on a single domain:
McNemar’s test

* Back to the Labor dataset: comparing C4.5 and NB, we obtain

) (111 —2| —1)? ‘
P — —64/13 = 4.92
X]\»Ic."\ emar 11 4 2 /

* Which is greater than the desired value of 3.841 allowing us to reject
the null hypothesis at 95% confidence
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Comparing 2 algorithms on a single domain:

McNemar’s test

To keep in mind:

Test aimed for matched pairs (maintain same training and test folds
across learning algorithms)

Using resampling instead of independent test sets (over multiple runs)

can introduce some bias

A constraint: ¢31¢ + ¢M¢ (the diagonal) should be at least 20 which

was not true in this case.

 In such a case, sign test (also applicable for comparing 2 algorithms on
multiple domains) should be used instead
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Comparing 2 algorithms on a multiple domains

e No clear parametric way to compare two classifiers on

multiple domains:

- t-test is not a very good alternative because it is not clear that we
have commensurability of the performance measures across

domains
« The normality assumption is difficult to establish
« The t-test is susceptible to outliers, which is more likely when
many different domains are considered.
e Therefore we will describe two non-parametric alternatives

=» The Sign Test
=» Wilcoxon’s signed-Rank Test

93



/

Comparing 2 algorithms on-a multiple domains:
Sign test

Can be used to compare two classifiers on a single domain (using
the results at each fold as a trial)

More commonly used to compare two classifiers on multiple
domains

Calculate:

ng.: the number of times that fi outperforms f2
Ng,: the number of times that f2 outperforms fi

Null hypothesis holds if the number of wins follow a binomial
distribution.

Practically speaking, a classifier should perform better on at least
w, (the critical value) datasets to reject null hypothesis at o

significance level
94



‘Comparing 2 algor\itﬂnscwmg

/Sign test: lllustration

Anneal 96.43 99.44 83.63 99.55
Audiology 73.42 81.34 46.46 79.15

Balance Scale  72.30 01.51 72.31 80.97
Breast Cancer  71.70 66.16 70.28 69.99
Contact Lenses 71.67 71.67 71.67 71.67

Pima Diabetes 74.36 77.08 7435 74.88
Glass 70.63 62.21 44.91 79.87
Hepatitis 83.21 80.63 82.54 84.58
Hypothyroid 08.22 03.58 03.21 99.39
Tic-Tac-Toe 69.62 99.90 72.54 93.94

* NBvs SVM: n,=4.5, n,= 5.5 and w, ,; = 8 =» we cannot reject the null hypothesis (1-tailed)

« Adavs RF: n,=1 and n,=8.5 =» we can reject the null hypothesis at level a=0.05 (1-tailed)
and conclude that RF is significantly better than Ada on these data sets at that significance%evel.



Comparing 2 algorithms on a multipfe domains:

Wilcoxon’s Sighed-Rank test

Non-parametric, and typically more powerful than sign test (since,
unlike sign test, it quantifies the differences in performances)

Commonly used to compare two classifiers on multiple domains

Method

For each domain, calculate the difference in performance of the
two classifiers

Rank the absolute differences and graft the signs in front of these
ranks

Calculate the sum of positive ranks W and sum of negative ranks
\\

S2

Calculate T

wilcox

= min (W
Reject null hypothesis if T

wilcox

W)

<V, (critical value)

s1?)
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Comparing 2 algorithms o

omains:

Wilcoxon’s Signed-Rank test' lllustration

N N 8 T P

9643
7342
77230
77170
7167
7436
7063
.8321

N

O o0 N o U1 A~ W

.0822
10 .6962

For n=10-1 degrees of freedom and a = 0.05, VV = 8 for the 1-sided test.
Since 17 > 8. Hence, we cannot reject the null hypothesis

9944
.8134

.0151
.6616

7167
7708

.6221

.8063
9358
‘9990
Ws, =17 and W, =28 > T

-0.0301
-0.0792
-0.1921

+0.0554
0

-0.0272
+0.0842
+0.0258
+0.0464

-0.3028

Wilcox

0.0301
0.0792
0.1921

0.0554
O

0.0272
0.0842
0.0258
0.0464

0.3028

=min(17, 28) = 17

6
8

Remove

-6
-8

+5
Remove

7

+1

+4
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Comparing multiple algorithms on a multiple

domains

Two alternatives
Parametric: (one-way repeated measure) ANOVA ;

Non-parametric: Friedman’s Test.

Such multiple-hypothesis tests are called Omnibus tests.

Their null hypotheses: is that all the classifiers perform similarly,
and its rejection signifies that: there exists at least one pair of
classifiers with significantly different performances.

In case of rejection of this null hypothesis, the omnibus test is
followed by a Post-hoc test to identify the significantly different pairs
of classifiers.

In this tutorial, we will discuss Friedman’s Test (omnibus) and the
Nemenyi test (post-hoc test).
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Friedman’s Test

Algorithms are ranked on each domain according to their
performances (best performance = lowest rank)

 In case of a d-way tie at rank r: assign ((r+1)+(r+2)+...+(r+d))/d to
each classifier

For each classifier j, compute R; : the sum of its ranks on
all domains

Calculate Friedman’s statistic:

. k
12 i

Rl —3xnx(k+1

72..><k.><(k_|_1)xj2::1( i) xn x (k+1)

‘7-]t\.'J

over n domains and k classifiers 99
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Illustration of the Friedman test

Cla551ﬁer Cla551ﬁer Classifier Classifier Cla551ﬁer Classifier
fC fA fC

85. 83 75.86  84.19 3
2 85.91 73.18 85.90 2 1.5 3 1.5
3 86.12 69.08 83.83 3 1 3 2
4 85.82 74.05 85.11 4 1 3 2
5 86.28 74.71 86.38 5 2 3 1
6 86.42 65.90 81.20 6 1 3 2
7 85.91 76.25 86.38 7 2 3 1
8 86.10 75.10 86.75 8 2 3 1
9 85.95 70.50 88.03 o) 2 3 1
19 86.12 73.95 87.18 10 2 3 1
R ; 15.5 30 14.5

Sk ><31><2(3+1) x ¥3_1(R )?]1-3x10 x (3+1)=15.05 For a 2-tailed test at the
0.05 level of significance, the critical value is 7.8. xg2 > 7.8, i.e., Rejection of the'™H.



Nemenyi Test

The omnibus test rejected the null hypothesis

Follow up by post-hoc test: Nemenyi test to identify classifier-pairs with
significant performance difference

Let R; : rank of classifier f; on data S; Compute mean rank of {; on all

datasets .

— 1
3 — i

Between classifier f; and f;,, calculate
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Nemenyi Test: lllustration

Computing the g statistic of Nemenyi test for different
classifier pairs, we obtain:

® (ap = -32.22

= Ype s dida

® (ac = 2.22

At o = 0.05, we have g, = 2.55.

Hence, we can show a statistically significantly different
performance between classifiers A and B, and between
classifiers B and C, but not between A and C
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Data Set Selection
and Evaluation Benchmark
Design
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Considerations to keep in mind while
choosing an appropriate test bed

Wolpert’s “No Free Lunch” Theorems: if one algorithm tends to perform
better than another on a given class of problems, then the reverse will
be true on a different class of problems.

LaLoudouana and Tarate (2003) showed that even mediocre learning
approaches can be shown to be competitive by selecting the test
domains carefully.

=>The purpose of data set selection should not be to demonstrate an
algorithm’s superiority to another in all cases, but rather to identify the
areas of strengths of various algorithms with respect to domain
characteristics or on specific domains of interest.
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Where can we get our data from?

Repository Data: Data Repositories such as the UCI
repository and the UCI KDD Archive have been extremely
popular in Machine Learning Research.

Artificial Data: The creation of artificial data sets
representing the particular characteristic an algorithm was
designed to deal with is also a common practice in
Machine Learning

Web-Based Exchanges: Could we imagine a multi-
disciplinary effort conducted on the Web where
researchers in need of data analysis would “lend” their
data to machine learning researchers in exchange for an

analysis?
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Pros and Cons of Repository Data

Pros:

e Very easy to use: the data is available, already processed and the
user does not need any knowledge of the underlying field.

e The data is not artificial since it was provided by labs and so on. So
in some sense, the research is conducted in real-world setting
(albeit a limited one)

e Replication and comparisons are facilitated, since many
researchers use the same data set to validate their ideas.

Cons:

e The use of data repositories does not guarantee that the results will
generalize to other domains.

e The data sets in the repository are not representative of the data
mining process which involves many steps other than
classification.

e Community experiment/Multiplicity effect: since so many
experiments are run on the same data set, by chance, some will 106
yield interesting (though meaningless) results
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Pros and Cons of Artificial Data

Pros:

e Data sets can be created to mimic the traits that are expected to be
present in real data (which are unfortunately unavailable)

e The researcher has the freedom to explore various related
situations that may not have been readily testable from accessible
data.

e Since new data can be generated at will, the multiplicity effect will
not be a problem in this setting.

Cons:

e Real data is unpredictable and does not systematically behave
according to a well defined generation model.

e Classifiers that happen to model the same distribution as the one
used in the data generation process have an unfair advantage.
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Pros and Cons of Web-Based Exchanges

Pros:
e Would be useful for three communities:

« Domain experts, who would get interesting analyses of their
problem

« Machine Learning researchers who would be getting their
hand on interesting data, and thus encounter new problems

- Statisticians, who could be studying their techniques in an
applied context.

Cons:
e It has not been organized. Is it truly feasible?
e How would the quality of the studies be controlled?
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A Technique for Characterizing our Data Sets
[Japkowicz, Canadian Al’2012]

* The approach can be characterized as a meta-level
transductive process driven by classifier evaluation:

/_) ¢
Hidden Characteristics

Evaluation Space
o N
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~ Evaluation Space Mapping

Artificial domains

Hierarchical
Clusterer

Classifiers
Real-World domains )

Clustering 110
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Results
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the hierarchical clustering obtained for each domain)

The graph below shows the hidden characteristics that we have extracted
from each of the UCI domains we considered, along with the relative
strength of these characteristics (which were derived from the distance of
each domain mapping to the ideal domain in the evaluation space by way of
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Available Resources
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What help is available for conducting proper
evaluation?

There is no need for researchers to program all the code necessary to
conduct proper evaluation nor to do the computations by hand.

Resources are readily available for every steps of the process,
including:

e Evaluation metrics

e Statistical tests

e Re-sampling

e And of course, Data repositories

Pointers to these resources and explanations on how to use them are
discussed in our book: <“Evaluating Learning Algorithms: A
Classification Perspective” by Japkowicz and Shah, Cambridge
University Press, 2011>.
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Actually, as most

people know, Weka
is a great source for,
not only, classifiers,
but also
computation of the
results according to
a variety of
evaluation metrics

==F Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

KsB Relative Info Score

KsB Information Score

Class complexity | order 0
Class complexity | scheme
Complexity improvement

Mean absolute error

Root mean squared error
Relative absoclute error
Root relative squared error
Total Number of Instances

(5£)

=== Detailed Accuracy By Class ===

TP Rate FP Rate
0.7 0.243
0.757 0.3
Weighted Avg. 0.737 0.28

=== Confusion Matrix ===

a b <-- classified as
14 &€ | a = bad
928 | b = good

42
15

57

.4415
1769.
le.
53.
3267.
-3213.
.3192
.4669
69.
97.

6451
5588
3249
2456
9207

7715

fes
[==]=]

Precision
0.609
0.824
0.748

bits
bits
bits
bits

0.7

0.757
0.737

73.
26.

Recall F-Measure
0.
0.
0.

6842 3
3158 %

.2905 bits/instance
.9355 bits/instance

57.
-56.

3201 bits/instance
3846 bits/instance

ROC Area C(Class

651 0.695 bad
789 0.695 good
74 0.695




WEKA even performs ROC Analysis and

draws Cost-Curves

£ Weka Classifier Visualize: CostCurve. (Class value good)

X: Faise Positive Rate (Num) i v || Y: True Positive Rate (Num) ) 'X: Brobability Cost Function (Num) ¢ v | [v: Normalized Expected Cost (Num) -
.Colour: Threshold (Num) ) -Select Instance )| Colour: Threshold (Num) v | |Select Instance N
Reset ’ Clear " Open ” Save Jitter u Reset [ Clear " Open “ Save Jitter I]
Plot (Area under ROC = 0.6946) Plot:Co
¥ o
1 [P T e—— __-3—“"_- = .._' el : -
547 )
.x’)(
,»—"’f N
0.081 I P— . LU T ;
0.15 0.57 1 ) A 0 o-s *
e Class colour
0.0z 0.51 3 0.0z 0.51 1

Although better graphical analysis packages are available in R, namely the
ROCR package, which permits the visualization of many versions of ROC and
Cost Curves, and also Lift curves, P-R Curves, and so on
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here to look for Statistical Tests?

The R Software
Package contains
implementations
e e of all the statistical

> 751, 1753, .263Z,
> nb 0z . 02, L0175, _070Z. L0528, 51, .0351,.0702]
> k. o5, n, paired= TRUE]

S | tests discussed
o 1 2 e here and many
more. They are
very simple to run.

t ccofidence Interval:
3 0.1965137

> c4510fclds= c{3, 0, 2, 0, 2, 2, 2, 1, 1, 1)
> nbl0Zolds=c¢(1, 0, 0, 0, 0, 1, 0, 2, 0, O}
> wilcox.test(nbllfeolds, <4510Z0lds, paired= TRUE)

ss&= 2(85.83, 85.3
.86,

Wilcoxon signed rank test with centinuity correction

data: nbl0folds and c4510fclds
¥V =2.5, p-value = 0.03125
alternative hypothesis: true location shift is neot equal to 0

Friedean rank sun test

Gtz
Friednan chi-squared = 13,
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Where to look for Re-sampling methods?

In our book, we have implemented all the re-sampling schemes
described in this tutorial. The actual code is also available upon request.
(e-mail us!)

eoBoot = function(iter, dataSet, setSize, dimension, classifier, classifier2){
classifierieoBoot <- numeric(iter)
classifierzeoBoot <- numeric(iter)

for(i in 1:iter) {

Subsamp <- sample(setSize, setSize, replace=TRUE)

Basesamp <- 1:setSize
oneTrain <- dataSet[Subsamp ,1:dimension |

oneTest <- dataSet[setdiff(Basesamp,Subsamp), 1:dimension]
classifiertmodel <- classifieri(class~., data=oneTrain)
classifierzmodel <- classifier2(class~., data=oneTrain)
classifierieval <- evaluate_Weka_classifier(classifiertmodel, newdata=oneTest
classifieriacc <- as.numeric(substr(classifierievalsstring, 70,80))
classifierzeval <- evaluate_Weka_classifier(classifierzmodel,
newdata=oneTest)
classifier2acc <- as.numeric(substr(classifierzevalsstring, 70,80))
classifierieoBoot[i]= classifieriacc

classifierzeoBoot[i]= classifierzacc
}

return(rbind(classifierieoBoot, classifier2eoBoot))}
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The End

Some Concluding Remarks




If you need help, advice, etc...

* Please, contact us at:
nat@site.uottawa.ca or

mohak@mohakshah.com

* Thank you for attending the tutorial!!!
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References

Too many to put down here, but pp. 393-402 of the
book.

If you want specific ones, come and see us at the end
of the tutorial or send us an e-mail.
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