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Abstract

While methods for comparing two learning algorithms on aleinigta set have been scrutinized for
guite some time already, the issue of statistical testsdfionpgarisons of more algorithms on multiple
data sets, which is even more essential to typical machamaileg studies, has been all but ignored.
This article reviews the current practice and then thecailyi and empirically examines several
suitable tests. Based on that, we recommend a set of simgtlsaje and robust non-parametric
tests for statistical comparisons of classifiers: the Wittosigned ranks test for comparison of
two classifiers and the Friedman test with the corresponglirsgrhoc tests for comparison of more
classifiers over multiple data sets. Results of the latteradso be neatly presented with the newly
introduced CD (critical difference) diagrams.

Keywords: comparative studies, statistical methods, Wilcoxon gigraamks test, Friedman test,
multiple comparisons tests

1. Introduction

Over the last years, the machine learning community has become increasuagéyat the need for
statistical validation of the published results. This can be attributed to the matutitg area, the
increasing number of real-world applications and the availability of open imaddarning frame-
works that make it easy to develop new algorithms or modify the existing, anga@ them among
themselves.

In a typical machine learning paper, a new machine learning algorithm, afpaor some new
pre- or postprocessing step has been proposed, and the implicit hgisothenade that such an
enhancement yields an improved performance over the existing algorithhiténatively, various
solutions to a problem are proposed and the goal is to tell the succeassfulfe failed. A number
of test data sets is selected for testing, the algorithms are run and the quéiigresulting models
is evaluated using an appropriate measure, most commonly classificatioa@ccthe remaining
step, and the topic of this paper, is to statistically verify the hypothesis of iredrnperformance.

The following section explores the related theoretical work and existincfipea Various re-
searchers have addressed the problem of comparing two classifeessraie data set and proposed
several solutions. Their message has been taken by the community, anérlgeconfident paired
t-tests over cross validation folds are giving place to the McNemar test aAdctcEoss validation.
On the other side, comparing multiple classifiers over multiple data sets—a situuicimi&/even
more common, especially when general performance and not the peniceroa certain specific
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problem is tested—is still theoretically unexplored and left to varemifocprocedures that either
lack statistical ground or use statistical methods in inappropriate ways.eTwlsat is used in the

actual practice, we have studied the recent (1999-2003) proceatfittte International Conference
on Machine Learning. We observed that many otherwise excellent aaddtive machine learning

papers end by drawing conclusions from a matrix of, for instance, Mew¥s tests comparing all

pairs of classifiers, as if the tests for multiple comparisons, such as AN@Q#A-dedman test are
yet to be invented.

The core of the paper is the study of the statistical tests that could be (adwlage) used for
comparing two or more classifiers on multiple data sets. Formally, assume thatevéebtedk
learning algorithms oM data sets. Led:iJ be the performance score of thieh algorithm on the
i-th data set. The task is to decide whether, based on the \aiueg algorithms are statistically
significantly different and, in the case of more than two algorithms, whichhar@articular algo-
rithms that differ in performance. We will not record the variance of timesgcj, but will only
assume that the measured results are “reliable”; to that end, we requimtm'gh experiments
were done on each data set and, preferably, that all the algorithmsewatated using the same
random samples. We make no other assumptions about the sampling scheme.

In Section 3 we shall observe the theoretical assumptions behind eadh tiestlight of our
problem. Although some of the tests are quite common in machine learning litenataing, re-
searchers seem ignorant about what the tests actually measure ahdcistuenstances they are
suitable for. We will also show how to present the results of multiple comparisith neat space-
friendly graphs. In Section 4 we shall provide some empirical insights int@tbperties of the
tests.

2. Previous Work

Statistical evaluation of experimental results has been considered ariaspart of validation
of new machine learning methods for quite some time. The tests used haveehdoray been
rather naive and unverified. While the procedures for comparisompairaf classifiers on a single
problem have been proposed almost a decade ago, comparative siitlliemre classifiers and/or
more data sets still employ partial and unsatisfactory solutions.

2.1 Related Theoretical Work

One of the most cited papers from this area is the one by Dietterich (199&) deescribing the
taxonomy of statistical questions in machine learning, he focuses on thigoguefsideciding which
of the two algorithms under study will produce more accurate classifiens tested on a given data
set. He examines five statistical tests and concludes the analysis by recomgrtbachewly crafted
5x2cv t-test that overcomes the problem of underestimated variance arahtbexciently elevated
Type | error of the more traditional paired t-test over folds of the ugdfald cross validation.
For the cases where running the algorithm for multiple times is not appropbatterich finds
McNemar's test on misclassification matrix as powerful as th@& t-test. He warns against t-
tests after repetitive random sampling and also discourages using t-testsrass-validation. The
5x2cv t-test has been improved by Alpaydin (1999) who constructed a rabustr5<2cv F test
with a lower type | error and higher power.
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Bouckaert (2003) argues that theoretical degrees of freedoimareect due to dependencies
between the experiments and that empirically found values should be useadinghile Nadeau
and Bengio (2000) propose the corrected resampled t-test that adjeistartince based on the
overlaps between subsets of examples. Bouckaert and Frank @wotekd Frank, 2004; Bouck-
aert, 2004) also investigated the replicability of machine learning experinfentsd the 52cv
t-test dissatisfactory and opted for the corrected resampled t-test. Faragereral work on the
problem of estimating the variance of k-fold cross validation, see the wd@kmgio and Grandvalet
(2004).

None of the above studies deal with evaluating the performance of multipkfides and nei-
ther studies the applicability of the statistics when classifiers are tested overlendétp sets. For
the former case, Salzberg (1997) mentions ANOVA as one of the poselbtess, but afterwards
describes the binomial test with the Bonferroni correction for multiple corspas. As Salzberg
himself notes, binomial testing lacks the power of the better non-parametri@testhe Bonfer-
roni correction is overly radical. &quez et al. (2001) and Pizarro et al. (2002), for instance, use
ANOVA and Friedman'’s test for comparison of multiple models (in particulasraenetworks) on
a single data set.

Finally, for comparison of classifiers over multiple data sets, Hull (1994) teabe best of our
knowledge, the first who used non-parametric tests for comparing adassifinformation retrieval
and assessment of relevance of documents (see algite8at al., 1995). Brazdil and Soares (2000)
used average ranks to compare classification algorithms. Pursuingremiff@al of choosing the
optimal algorithm, they do not statistically test the significance of differeneggden them.

2.2 Testing in Practice: Analysis of ICML Papers

We analyzed the papers from the proceedings of five recent Intemah@wnferences on Machine
Learning (1999-2003). We have focused on the papers that corapdeast two classifiers by
measuring their classification accuracy, mean squared error, AUG @BetSchultz, 1986), preci-
sion/recall or some other model performance score.

The sampling methods and measures used for evaluating the performanassdfers are not
directly relevant for this study. It is astounding though that classificatimuracy is usually still
the only measure used, despite the voices from the medical (Beck anlizS&886; Bellazzi and
Zupan, 1998) and the machine learning community (Provost et al., 19688ldya 2000) urging that
other measures, such as AUC, should be used as well. The only reattitompto classification
accuracy are the measures that are used in the area of documenakeffibig is also the only
field where the abundance of data permits the use of separate testingtgl@atead of using cross
validation or random sampling.

Of greater interest to our paper are the methods for analysis of diffesdmetween the algo-
rithms. The studied papers published the results of two or more classifersnoitiple data sets,
usually in a tabular form. We did not record how many of them include (infgratatements about
the overall performance of the classifiers. However, from one quamnttup to a half of the papers
include some statistical procedure either for determining the optimal method corfgaring the
performances among themselves.

The most straightforward way to compare classifiers is to compute the av@ragall data sets;
such averaging appears naive and is seldom used. Pairwise t-testearéhe only method used for
assessing statistical significance of differences. They fall into thriega@aes: only two methods
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1999 2000 2001 2002 2003
Total number of papers 54 152 80 87 118
Relevant papers for our study 19 45 25 31 54

Sampling method [%]
cross validation, leave-one-out 22 49 44 42 56
random resampling 11 29 44 32 54
separate subset 5 11 0 13 9

Score function [%]
classification accuracy 74 67 84 84 70
classification accuracyexclusively 68 60 80 58 67

recall, precision. .. 21 18 16 25 19
ROC, AUC 0 4 4 13 9
deviations, confidence intervals 32 42 48 42 19

Overall comparison of classifiers [%0] 53 44 44 26 45

averages over the data sets 0 4 6 0 10
t-test to compare two algorithms 16 11 4 6 7
pairwise t-test one vs. others 5 11 16 3 7
pairwise t-test each vs. each 16 13 4 6 4
counts of wins/ties/losses 5 4 0 6 9
counts ofsignificantwins/ties/losses 16 4 8 16 6

Table 1. An overview of the papers accepted to International Cordferen Machine Learning
in years 1999—2003. The reported percentages (the third line and )bapply to the
number of papers relevant for our study.

are compared, one method (a new method or the base method) is compareattretie or all
methods are compared to each other. Despite the repetitive warningstagaitigle hypotheses
testing, the Bonferroni correction is used only in a few ICML papers aljmuA common non-
parametric approach is to count the number of times an algorithm performs taettee or equally
to the others; counting is sometimes pairwise, resulting in a matrix of wins/ties/losses and the
alternative is to count the number of data sets on which the algorithm outpexdacall the others.
Some authors prefer to count only the differences that were statisticafiificgont; for verifying
this, they use various techniques for comparison of two algorithms thatrexassved above.

This figures need to be taken with some caution. Some papers do not explestyilte the
sampling and testing methods used. Besides, it can often be hard to de@teewéa specific
sampling procedure, test or measure of quality is equivalent to the enerar not.

3. Statistics and Tests for Comparison of Classifiers

The overview shows that there is no established procedure for corgpassifiers over multiple
data sets. Various researchers adopt different statistical and cosense-techniques to decide
whether the differences between the algorithms are real or random. betitisn we shall examine
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several known and less known statistical tests, and study their suitabilipufquurpose from the
point of what they actually measure and of their safety regarding the atisasthey make about
the data.

As a starting point, two or more learning algorithms have been run on a suitht¢ data
sets and were evaluated using classification accuracy, AUC or somenatiasure (see Tables 2
and 6 for an example). We do not record the variance of these reseitsmiltiple samples, and
therefore assume nothing about the sampling scheme. The only requinernttesit the compiled
results provide reliable estimates of the algorithms’ performance on eactsetatdn the usual
experimental setups, these numbers come from cross-validation ordpeated stratified random
splits onto training and testing data sets.

There is a fundamental difference between the tests used to assessettenchf between two
classifiers on a single data set and the differences over multiple data de¢s.tééting on a single
data set, we usually compute the mean performance and its variance cadtiviepraining and
testing on random samples of examples. Since these samples are usualty eelateof care is
needed in designing the statistical procedures and tests that avoid pretitbrbg@ased estimations
of variance.

In our task, multiple resampling from each data set is used only to assessrtbemance
score and not its variance. The sources of the variance are thesdifeey in performance over
(independent) data sets and not on (usually dependent) samples, deviteceType 1 error is
not an issue. Since multiple resampling does not bias the score estimationsugpes of cross-
validation or leave-one-out procedures can be used without any risk.

Furthermore, the problem of correct statistical tests for comparing cerssifh a single data
set is not related to the comparison on multiple data sets in the sense that wefivgbuieve to
solve the former problem in order to tackle the latter. Since running the algwridm multiple data
sets naturally gives a sample of independent measurements, such comgareseven simpler than
comparisons on a single data set.

We should also stress that the “sample size” in the following section will refdsetaumber of
data sets used, not to the number of training/testing samples drawn fronmdadtiual set or to
the number of instances in each set. The sample size can therefore bdl as $iveand is usually
well below 30.

3.1 Comparisons of Two Classifiers

In the discussion of the tests for comparisons of two classifiers over multiglesets we will make
two points. We shall warn against the widely used t-test as usually comtigghappropriate and
statistically unsafe. Since we will finally recommend the Wilcoxon (1945) sigaals test, it will
be presented with more details. Another, even more rarely used test isrittestigvhich is weaker
than the Wilcoxon test but also has its distinct merits. The other message wilittdehdescribed
statistics measure differences between the classifiers from differggttasso the selection of the
test should be based not only on statistical appropriateness but aldtabme intend to measure.

3.1.1 AVERAGING OVER DATA SETS

Some authors of machine learning papers compute the average classificaticataes of classifiers
across the tested data sets. In words of Webb (2000), “it is debatabtbavlerror rates in different
domains are commensurable, and hence whether averaging errocrasssgomains is very mean-
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ingful”. If the results on different data sets are not comparable, theiages are meaningless. A
different case are studies in which the algorithms are compared on arekttefl problems, such as
medical databases for a certain disease from different institutions iousaext mining problems
with similar properties.

Averages are also susceptible to outliers. They allow classifier's excpbeformance on one
data set to compensate for the overall bad performance, or the oppdsit®,failure on one domain
can prevail over the fair results on most others. There may be situationsich wuch behaviour
is desired, while in general we probably prefer classifiers that belell®n as many problems as
possible, which makes averaging over data sets inappropriate.

Given that not many papers report such averages, we can assuntigetitammunity gener-
ally finds them meaningless. Consequently, averages are also notnasadséful) for statistical
inference with the z- or t-test.

3.1.2 RAIRED T-TEST

A common way to test whether the difference between two classifiers’ resgltvarious data sets
is non-random is to compute a paired t-test, which checks whether thegavdifference in their
performance over the data sets is significantly different from zero.

Let ¢! andc? be performance scores of two classifiers onittieout of N data sets and lef;
be the difference? — c'. Thet statistics is computed a o5 and is distributed according to the
Student distribution witiN — 1 degrees of freedom.

In our context, the t-test suffers from three weaknesses. The fasiisnensurability: the t-test
only makes sense when the differences over the data sets are comreenguthis view, using
the paired t-test for comparing a pair of classifiers makes as little sensengsitiog the averages
over data sets. The average differedoequals the difference between the averaged scores of the
two classifiersd = ¢2 — ct. The only distinction between this form of the t-test and comparing
the two averages (as those discussed above) directly using the t-testdétated samples is in the
denominator: the paired t-test decreases the standardogrbyrthe variance between the data sets
(or, put another way, by the covariance between the classifiers).

Webb (2000) approaches the problem of commensurability by computing tineegygc means
of relative ratios,([];ct/c?)Y/N. Since this equals te*/N%i(nG—In%®) ' this statistic is essentially
the same as the ordinary averages, except that it compares logarithowseasf.sThe utility of this
transformation is thus rather questionable. Quinlan (1996) computes arithmesits of relative
ratios; due to skewed distributions, these cannot be used in the t-test Withibier manipulation.
A simpler way of compensating for different complexity of the problems is tadithe difference
by the average scord, — —9-3

(cH+cf) /2"

The second problem with the t-test is that unless the sample size is largehepoB@ data
sets), the paired t-test requires that the differences between the tthamamriables compared are
distributed normally. The nature of our problems does not give any poogisor normality and the
number of data sets is usually much less than 30. Ironically, the Kolmogamim@v and similar
tests for testing the normality of distributions have little power on small samplessittaey are
unlikely to detect abnormalities and warn against using the t-test. Therédoresing the t-test we
need normal distributions because we have small samples, but the small samspl@rohibit us
from checking the distribution shape.
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C4.5 C4.5+m| difference rank

adult (sample) 0.763 0.768 +0.005 3.5
breast cancer 0.599 0.591 -0.008 7
breast cancer wisconsin  0.954  0.971 +0.017 9
cmc 0.628 0.661 +0.033 12
ionosphere 0.882 0.888/ 40.006 5
iris  0.936 0.931 —-0.005 35

liver disorders 0.661 0.668 +0.007 6
lung cancer 0.583 0.583 0.000 15
lymphography 0.775 0.838] +0.063 14
mushroom 1.000 1.000 0.000 1.5
primary tumor 0.940 0.962 +0.022 11
rheum 0.619 0.666 +0.047 13

voting 0.972 0.981 +0.009 8

wine 0.957 0.978 +0.021 10

Table 2: Comparison of AUC for C4.5 with= 0 and C4.5 wittmtuned for the optimal AUC. The
columns on the right-hand illustrate the computation and would normally not bisipetb

in an actual paper.

The third problem is that the t-test is, just as averaging over data setsteaffoy outliers which
skew the test statistics and decrease the test’s power by increasing theexkstaadard error.

3.1.3 WILCOXON SIGNED-RANKS TEST

The Wilcoxon signed-ranks test (Wilcoxon, 1945) is a non-parametricalige to the paired t-test,
which ranks the differences in performances of two classifiers fdr data set, ignoring the signs,
and compares the ranks for the positive and the negative differences.

Let d; again be the difference between the performance scores of the twiietasmi-th out
of N data sets. The differences are ranked according to their absolutes,valtexage ranks are
assigned in case of ties. LRt be the sum of ranks for the data sets on which the second algorithm
outperformed the first, anB~ the sum of ranks for the opposite. Ranksdpf= 0 are split evenly
among the sums; if there is an odd number of them, one is ignored:

1 - N -
RF = diZorank(di) +5 diZorank(di) R™ = dZorank(dl) +5 dizorank(dl)-

Let T be the smaller of the sum§,= min(R™,R~). Most books on general statistics include a
table of exact critical values far for N up to 25 (or sometimes more). For a larger number of data
sets, the statistics

T—IN(N+1)

VAEANN+ 12N +1)

Z=

is distributed approximately normally. Witlh = 0.05, the null-hypothesis can be rejected ik
smaller than-1.96.
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Let us illustrate the procedure on an example. Table 2 shows the compafi8ti€ for C4.5
with m(the minimal number of examples in a leaf) set to zero and C4.5mitmed for the opti-
mal AUC. For the latter, AUC has been computed with 5-fold internal crolsdaten on training
examples fome {0,1,2,3,5,10,15,20,50}. The experiments were performed on 14 data sets from
the UCI repository with binary class attribute. We used the original Quinfa#’s code, equipped
with an interface that integrates it into machine learning system OrangeS@emd Zupan, 2004),
which provided us with the cross validation procedures, classes forgtanguments, and the scor-
ing functions. We are trying to reject the null-hypothesis that both algoritterfeqm equally well.

There are two data sets on which the classifiers performed equally (fumogicand mushroom);
if there was an odd number of them, we would ignore one. The ranks sigmad from the lowest
to the highest absolute difference, and the equal differenc@8{+0.005) are assigned average
ranks.

The sum of ranks for the positive difference®Ris = 3.5+ 9+ 12+ 5+ 6+ 14+ 11+ 13+ 8+
10+ 1.5 = 93 and the sum of ranks for the negative differences edqals 7+ 3.5+ 1.5 = 12.
According to the table of exact critical values for the Wilcoxon’s test, faoafidence level of
o = 0.05 andN = 14 data sets, the difference between the classifiers is significant if the sofalle
the sums is equal or less than 21. We therefore reject the null-hypothesis.

The Wilcoxon signed ranks test is more sensible than the t-test. It assumeseosurability of
differences, but only qualitatively: greater differences still countenarhich is probably desired,
but the absolute magnitudes are ignored. From the statistical point of vieweghis safer since it
does not assume normal distributions. Also, the outliers (exceptionallylgmbgerformances on
a few data sets) have less effect on the Wilcoxon than on the t-test.

The Wilcoxon test assumes continuous differerg;etherefore they should not be rounded to,
say, one or two decimals since this would decrease the power of the tett dudegh number of
ties.

When the assumptions of the paired t-test are met, the Wilcoxon signedteshks less pow-
erful than the paired t-test. On the other hand, when the assumptions latedjohe Wilcoxon test
can be even more powerful than the t-test.

3.1.4 GOUNTS OFWINS, LOSSES ANDTIES: SIGN TEST

A popular way to compare the overall performances of classifiers is tot¢ba number of data
sets on which an algorithm is the overall winner. When multiple algorithms area@uppairwise
comparisons are sometimes organized in a matrix.

Some authors also use these counts in inferential statistics, with a form ohiainest that
is known as the sign test (Sheskin, 2000; Salzberg, 1997). If the tvaoithliqns compared are, as
assumed under the null-hypothesis, equivalent, each should win aoxapptelyN /2 out ofN data
sets. The number of wins is distributed according to the binomial distributiorgritieal number
of wins can be found in Table 3. For a greater number of data sets, theenwitwins is under
the null-hypothesis distributed accordingNgN /2, /N /2), which allows for the use of z-test: if
the number of wins is at leadt/2 4 1.96\/N/2 (or, for a quick rule of a thumid\/2++/N), the
algorithm is significantly better witlp < 0.05. Since tied matches support the null-hypothesis we
should not discount them but split them evenly between the two classifigrste is an odd number
of them, we again ignore one.
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#datasets 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Woo05 S 8 9 9 10 10 11 12 12 13 13 14 15 15 16 17 18 18
Woio 5 78 9 9 10 10 11 12 12 13 13 14 14 15 16 16 17

77
6 7

(23]

Table 3: Critical values for the two-tailed sign testiat 0.05 anda = 0.10. A classifier is signifi-
cantly better than another if it performs better on at legstiata sets.

In example from Table 2, C4.5+m was better on 11 out of 14 data setstijoguaiso one of
the two data sets on which the two classifiers were tied). According to Tabls 8itference is
significant withp < 0.05.

This test does not assume any commensurability of scores or differancekmes it assume
normal distributions and is thus applicable to any data (as long as the dimesybe. the data
sets, are independent). On the other hand, it is much weaker than the Wilsigned-ranks test.
According to Table 3, the sign test will not reject the null-hypothesis urdassalgorithm almost
always outperforms the other.

Some authors prefer to count only the significant wins and losses, uierggnificance is
determined using a statistical test on each data set, for instance Dietteric@cs.5The reasoning
behind this practice is that “some wins and losses are random and thede sbbcount”. This
would be a valid argument if statistical tests could distinguish between thermeawid non-random
differences. However, statistical tests only measure the improbability oftianed experimental
result if the null hypothesis was correct, which is not even the (im)pritityadif the null-hypothesis.

For the sake of argument, suppose that we compared two algorithms oroosard different
data sets. In each and every case, algorithm A was better than algorithu tBe difference was
never significant. It is true that for each single case the differencedesttihe two algorithms can
be attributed to a random chance, but how likely is it that one algorithm wakilg in all 2000
out of 1000 independent experiments?

Contrary to the popular belief, counting only significant wins and lossesftire does not make
the tests more but rather less reliable, since it draws an arbitrary threshmtd 0.05 between what
counts and what does not.

3.2 Comparisons of Multiple Classifiers

None of the above tests was designed for reasoning about the meankipliernandom variables.
Many authors of machine learning papers nevertheless use them fautipatse. A common ex-
ample of such questionable procedure would be comparing seven algobyhoesiducting all 21
paired t-tests and reporting results like “algorithm A was found significargttebthan B and C,
and algorithms A and E were significantly better than D, while there were ndisant differences
between other pairs”. When so many tests are made, a certain proportimrill hypotheses is
rejected due to random chance, so listing them makes little sense.

The issue of multiple hypothesis testing is a well-known statistical problem. Tl geal is
to control thefamily-wise error the probability of making at least one Type 1 error in any of the
comparisons. In machine learning literature, Salzberg (1997) mentionseaagsolution for the
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problem of multiple testing, the Bonferroni correction, and notes that ituallysvery conservative
and weak since it supposes the independence of the hypotheses.

Statistics offers more powerful specialized procedures for testing thiisamce of differences
between multiple means. In our situation, the most interesting two are the welkRkABQOVA
and its non-parametric counterpart, the Friedman test. The latter, and #gpec@rresponding
Nemenyi post-hoc test are less known and the literature on them is lessaaltufor this reason,
we present them in more detalil.

3.2.1 ANOVA

The common statistical method for testing the differences between more thaelatedrsample
means is theepeated-measures ANOV&r within-subjects ANOVA(Fisher, 1959). The “related
samples” are again the performances of the classifiers measuredthersase data sets, preferably
using the same splits onto training and testing sets. The null-hypothesis beied irethat all
classifiers perform the same and the observed differences are narebm.

ANOVA divides the total variability into the variability between the classifiersjalality be-
tween the data sets and the residual (error) variability. If the betweesHutas variability is signif-
icantly larger than the error variability, we can reject the null-hypothesicanclude that therare
some differences between the classifiers. In this case, we can pwithealpost-hoc test to find
out which classifiers actually differ. Of many such tests for ANOVA, the mast suitable for our
situation are the Tukey test (Tukey, 1949) for comparing all classifighsasch other and the Dun-
nett test (Dunnett, 1980) for comparisons of all classifiers with the ddffitranstance, comparing
the base classifier and some proposed improvements, or comparing thepnepdged classifier
with several existing methods). Both procedures compute the standardethe difference be-
tween two classifiers by dividing the residual variance by the numbertafsggs. To make pairwise
comparisons between the classifiers, the corresponding differenpedammances are divided by
the standard error and compared with the critical value. The two proeg@we thus similar to a
t-test, except that the critical values tabulated by Tukey and Dunnetigirertio ensure that there
is at most 5 % chance that one of the pairwise differences will be errghefmund significant.

Unfortunately, ANOVA is based on assumptions which are most probablytetlahen ana-
lyzing the performance of machine learning algorithms. First, ANOVA assuh@she samples
are drawn from normal distributions. In general, there is no guaraotemfmality of classification
accuracy distributions across a set of problems. Admittedly, even if digoiisuare abnormal this
is a minor problem and many statisticians would not object to using ANOVA utitesdistributions
were, for instance, clearly bi-modal (Hamilton, 1990). The second amd mgportant assumption
of the repeated-measures ANOVA is sphericity (a property similar to the henedty of variance
in the usual ANOVA, which requires that the random variables havela@u@nce). Due to the
nature of the learning algorithms and data sets this cannot be taken feedjyr&iolations of these
assumptions have an even greater effect on the post-hoc tests. ANewdte does not seem to
be a suitable omnibus test for the typical machine learning studies.

We will not describe ANOVA and its post-hoc tests in more details due to oarvasons about
the parametric tests and, especially, since these tests are well known sonitbet in statistical
literature (Zar, 1998; Sheskin, 2000).

10
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ANOVA
p<001 001<p<005 005<p
Friedman p<0.01 16 1 0
test 001< p<0.05 4 1 4
0.05< p 0 2 28

Table 4: Friedman’s comparison of his test and the repeated-measu@#Adh 56 independent
problems (Friedman, 1940).

3.2.2 RIEDMAN TEST

The Friedman test (Friedman, 1937, 1940) is a non-parametric equicdle repeated-measures
ANOVA. It ranks the algorithms for each data set separately, the bdstrpeng algorithm getting
the rank of 1, the second bestrank 2. .., as shown in Table 6. Iro€éiss (like in iris, lung cancer,
mushroom and primary tumor), average ranks are assigned.

Let r} be the rank of the-th of k algorithms on the-th of N data sets. The Friedman test
compares the average ranks of algorithiRs= %Zi ri‘. Under the null-hypothesis, which states
that all the algorithms are equivalent and so their réRkshould be equal, the Friedman statistic

2 12N
P k(k+1)

2
YR
]
is distributed according tgZ with k — 1 degrees of freedom, whéxh andk are big enough (as a
rule of a thumbN > 10 andk > 5). For a smaller number of algorithms and data sets, exact critical
values have been computed (Zar, 1998; Sheskin, 2000).

Iman and Davenport (1980) showed that Friedmgg’ss undesirably conservative and derived
a better statistic

(N—1)x8

N(k—1) - X
which is distributed according to the F-distribution with 1 and(k— 1) (N — 1) degrees of freedom.
The table of critical values can be found in any statistical book.

As for the two-classifier comparisons, the (non-parametric) Friedmahdsgheoretically less
power than (parametric) ANOVA when the ANOVA's assumptions are metiHisitdoes not need
to be the case when they are not. Friedman (1940) experimentally compE@dAtand his test
on 56 independent problems and showed that the two methods mostly agbé=4). When one
method finds significance at< 0.01, the other shows significance of at lepst 0.05. Only in 2
cases did ANOVA find significant what was insignificant for Friedmarijexihe opposite happened
in 4 cases.

If the null-hypothesis is rejected, we can proceed with a post-hoc testN@&hnyi test (Ne-
menyi, 1963) is similar to the Tukey test for ANOVA and is used when all classiéire compared to
each other. The performance of two classifiers is significantly difféfémt corresponding average
ranks differ by at least the critical difference

Fr =

k(k—+ 1)

CD=0a\ —on—
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#classifiers 2 3 4 5 6 7 8 9 10
CJoos 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164
JQo1o 1.645 2.052 2291 2.459 2589 2.693 2.780 2.855 2.920

(a) Critical values for the two-tailed Nemenyi test

#classifiers 2 3 4 5 6 7 8 9 10
QJoos 1.960 2.241 2.394 2.498 2576 2.638 2.690 2.724 2.773
Jo1o 1.645 1.960 2.128 2.241 2.326 2.394 2450 2.498 2539

(b) Critical values for the two-tailed Bonferroni-Dunn test; the numbesla$sifiers include the control
classifier.

Table 5: Critical values for post-hoc tests after the Friedman test

where critical values|, are based on the Studentized range statistic divideddyTable 5(a)).

When all classifiers are compared with a control classifier, we can insfedhd Nemenyi test
use one of the general procedures for controlling the family-wise arnmultiple hypothesis test-
ing, such as the Bonferroni correction or similar procedures. Althdligbe methods are generally
conservative and can have little power, they are in this specific case roeexfpl than the Ne-
menyi test, since the latter adjusts the critical value for makikg- 1) /2 comparisons while when
comparing with a control we only make- 1 comparisons.

The test statistics for comparing théh andj-th classifier using these methods is

ZZ(Ri—Rj)/\/ k(l:er) '

Thezvalue is used to find the corresponding probability from the table of noristaimlition, which
is then compared with an appropriate The tests differ in the way they adjust the valuenofo
compensate for multiple comparisons.

The Bonferroni-Dunn test (Dunn, 1961) controls the family-wise awmte by dividinga by the
number of comparisons made-{ 1, in our case). The alternative way to compute the same test is
to calculate the CD using the same equation as for the Nemenyi test, but usicrititad values
for a/(k— 1) (for convenience, they are given in Table 5(b)). The comparisondsatwhe tables
for Nemenyi’'s and Dunn'’s test shows that the power of the post-hoéstestich greater when all
classifiers are compared only to a control classifier and not betweenghesmsWe thus should not
make pairwise comparisons when we in fact only test whether a newly ggdpoethod is better
than the existing ones.

For a contrast from the single-step Bonferroni-Dunn procedurp;gteand step-down proce-
dures sequentially test the hypotheses ordered by their significanceiilMidenote the ordereg
values bypi, p2, ..., so thatp; < p2 <... < px_1. The simplest such methods are due to Holm
(1979) and Hochberg (1988). They both compare gachith a/(k— i), but differ in the order

12
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of the tests. Holm’s step-down procedure starts with the most signifigantlue. If p; is be-
low a/(k—1), the corresponding hypothesis is rejected and we are allowed to compari¢h
a/(k—2). If the second hypothesis is rejected, the test proceeds with the thirdpaord As soon
as a certain null hypothesis cannot be rejected, all the remaining hypsthesectained as well.
Hochberg's step-up procedure works in the opposite direction, cangpiéie largesp value witha,
the next largest witle /2 and so forth until it encounters a hypothesisahreject. All hypotheses
with smallerp values are then rejected as well.

Hommel's procedure (Hommel, 1988) is more complicated to compute and under&iast,
we need to find the largegtfor which pn_j,« > ka/j for all k= 1..j. If no suchj exists, we can
reject all hypotheses, otherwise we reject all for whichk< a/j.

Holm’s procedure is more powerful than the Bonferroni-Dunn’s andewaio additional as-
sumptions about the hypotheses tested. The only advantage of the@oifaunn test seems to
be that it is easier to describe and visualize because it uses the samedllRdonparisons. In turn,
Hochberg's and Hommel's methods reject more hypotheses than Holmtheyetay under some
circumstances exceed the prescribed family-wise error since theysee ba the Simes conjecture
which is still being investigated. It has been reported (Holland, 1991 }hleatifferences between
the enhanced methods are in practice rather small, therefore the more céthopherel method
offers no great advantage over the simple Holm method.

Although we here use these procedures only as post-hoc tests foigdmbn test, they can be
used generally for controlling the family-wise error when multiple hypothesg@®ssibly various
types are tested. There exist other similar methods, as well as some methaustéaat of control-
ling the family-wise error control the number of falsely rejected null-hypsdlgfalse discovery
rate, FDR). The latter are less suitable for the evaluation of machine leadgiogthms since they
require the researcher to decide for the acceptable false discoveryAanore complete formal
description and discussion of all these procedures was written, fonaestay Shaffer (1995).

Sometimes the Friedman test reports a significant difference but the posdghdails to detect
it. This is due to the lower power of the latter. No other conclusions than thae ségorithms do
differ can be drawn in this case. In our experiments this has, howesarrred only in a few cases
out of one thousand.

The procedure is illustrated by the data from Table 6, which comparesafgarithms: C4.5
with mfixed to 0 andcf (confidence interval) to 0.25, C4.5 withfitted in 5-fold internal cross
validation, C4.5 withcf fitted the same way and, finally, C4.5 in which we fitted both arguments,
trying all combinations of their values. Parameatavas setto 0, 1, 2, 3, 5, 10, 15, 20, 50 arfido
0,0.1,0.25and 0.5.

Average ranks by themselves provide a fair comparison of the algorithmavé&@age, C4.5+m
and C4.5+m+cf ranked the second (with ranks 2.000 and 1.964, resghgctand C4.5 and C4.5+cf
the third (3.143 and 2.893). The Friedman test checks whether the mea@suer@ge ranks are
significantly different from the mean rari = 2.5 expected under the null-hypothesis:

12-14 4.5

X2 = e (3.1432+2.0002+2.8932+1.9642)—T =928
13-9.28

Fr = 14-3—9.28_3‘69'

1. In the usual definitions of these procedukegould denote the number of hypotheses, while in our case the number
of hypotheses ik — 1, hence the differences in the formulae.
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C4.5 C4.5+m C4.5+cf C4.5+m-+cf
adult (sample) 0.763 (4) 0.768 (3) 0.771 (2) 0.798 (1)
breast cancer 0.599 (1) 0.591 (2) 0.590 (3) 0.569 (4)
breast cancer wisconsin  0.954 (4) 0.971 (1) 0.968 (2) 0.957 (
cmc  0.628 (4) 0.661 (1) 0.654 (3) 0.657 (2)
ionosphere  0.882 (4) 0.888 (2) 0.886 (3) 0.898 (1)
is  0.936 (1) 0.931(2.5) 0.916 (4) 0.931 (2.5)
liver disorders 0.661 (3) 0.668 (2) 0.609 (4) 0.685 (1)
lung cancer 0.583(2.5) 0.583(2.5) 0.563 (4) 0.625 (1)
lymphography 0.775 (4) 0.838 (3) 0.866 (2) 0.875 (1)
mushroom 1.000 (2.5) 1.000(2.5) 1.000(2.5) 1.000 (2.5)
primary tumor  0.940 (4) 0.962 (2.5) 0.965(1) 0.962 (2.5)
rheum 0.619 (3) 0.666 (2) 0.614 (4) 0.669 (1)
voting 0.972 (4) 0.981 (1) 0.975 (2) 0.975 (3)
wine 0.957 (3) 0.978 (1) 0.946 (4) 0.970 (2)
average rank 3.143 2.000 2.893 1.964

Table 6: Comparison of AUC between C4.5 with 0 and C4.5 with parametemsand/orcf tuned
for the optimal AUC. The ranks in the parentheses are used in computatiomefiedman
test and would usually not be published in an actual paper.

With four algorithms and 14 data sefs; is distributed according to thE distribution with
4—1=3and(4—-1) x (14— 1) =39 degrees of freedom. The critical valuedB, 39) for a = 0.05
is 2.85, so we reject the null-hypothesis.

Further analysis depends upon what we intended to study. If no classiegled out, we
use the Nemenyi test for pairwise comparisons. The critical value (Tdh)¢ S 2.569 and the
corresponding CD is.B6 & = 1.25. Since even the difference between the best and the worst
performing algorithm is already smaller than that, we can conclude that thdpodest is not
powerful enough to detect any significant differences between tlogitlos.

At p=0.10, CD is 2291\/5 = 1.12. We can identify two groups of algorithms: the perfor-
mance of pure C4.5 is significantly worse than that of C4.5+m and C4.5+mA#efcannot tell
which group C4.5+cf belongs to. Concluding that it belongs to both wouktgiatistical nonsense
since a subject cannot come from two different populations. Theamtatistical statement would
be thatthe experimental data is not sufficient to reach any conclusion rega@h5+ct

The other possible hypothesis made before collecting the data could be ithabgsible to
improve on C4.5's performance by tuning its parameters. The easiest wayfiathis is to compute
the CD with the Bonferroni-Dunn test. In Table 5(b) we find that the criticdli® gg s for 4

classifiers is 2.394, so CD is34,/ &2 = 1.16. C4.5+m+cf performs significantly better than

C4.5(3143—1.964=1.179> 1.16) and C4.5+cf does not @33—2.893= 0.250< 1.16), while
C4.5+m is just below the critical difference, but close to itl@3— 2.000= 1.143~ 1.16). We
can conclude that the experiments showed that fittisgems to help, while we did not detect any

significant improvement by fittingf .
For the other tests we have to compute and order the corresponding statistfrgalues. The

standard error iSE= /&=, = 0.488.
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i classifier z=(Ry—R)/SE p al/i

1 C4.5+m+cf (3.143—1.964)/0.488=2.416 Q016 Q017
2 C45+m (3.143-2000/0.488=2.342 0019 Q025
3  C4.5+cf (3.143-2893)/0.488=0.512 0607 Q050

The Holm procedure rejects the first and then the second hypothesstisencorresponding
values are smaller than the adjustés. The third hypothesis cannot be rejected; if there were any
more, we would have to retain them, too.

The Hochberg procedure starts from the bottom. Unable to reject theylasthiesis, it check
the second last, rejects it and among with it all the hypotheses with srpalidues (the top-most
one).

Finally, the Hommel procedure finds thpt= 3 does not satisfy the condition kt= 2. The
maximal value ofj is 2, and the first two hypotheses can be rejected since pheilues are below
a/2.

All step-down and step-up procedure found C4.5+cf+m and C4.5-+nifisigntly different from
C4.5, while the Bonferroni-Dunn test found C4.5 and C4.5+m too similar.

3.2.3 GONSIDERINGMULTIPLE REPETITIONS OFEXPERIMENTS

In our examples we have used AUCs measured and averaged ovttioepe®f training/testing
episodes. For instance, each cell in Table 6 represents an avekag@evold cross validation.
Could we also consider the variance, or even the results of individlekd%o

There are variations of the ANOVA and the Friedman test which can cansidléple observa-
tions per cellprovided that the observations are independent (Zar, 1998). Thit thencase here,
since training data in multiple random samples overlaps. We are not awarg stidistical test that
could take this into account.

3.2.4 (RAPHICAL PRESENTATION OFRESULTS

When multiple classifiers are compared, the results of the post-hoc tests emudally represented
with a simple diagram. Figure 1 shows the results of the analysis of the datd&folm6. The top

line in the diagram is the axis on which we plot the average ranks of methbdsaxis is turned so
that the lowest (best) ranks are to the right since we perceive the methals right side as better.

When comparing all the algorithms against each other, we connect thesgrbalgorithms that
are not significantly different (Figure 1(a)). We also show the critidénce above the graph.

If the methods are compared to the control using the Bonferroni-Dunwiestan mark the
interval of one CD to the left and right of the average rank of the contgaréhm (Figure 1(b)).
Any algorithm with the rank outside this area is significantly different fromdbetrol. Similar
graphs for the other post-hoc tests would need to plot a different adjosteal interval for each
classifier and specify the procedure used for testing and the congisgoorder of comparisons,
which could easily become confusing.

For another example, Figure 2 graphically represents the compariseatafdé scoring mea-
sures for the problem of keyword prediction on five domains formed filoenYahoo hierarchy
studied by Mladeri and Grobelnik (1999). The analysis reveals that Information gairopesf
significantly worse than Weight of evidence, Cross entropy Txt ands@attb, which seem to have
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4 3 2 1
| I | I I J

o |
C4.54-|_ ———C4.5+m+cf

C4.5+cf —————  C4.5+m

(@) Comparison of all classifiers against each other with the Nemertyi @ups of classifiers that are not
significantly different (app = 0.10) are connected.

4 3 2 1

C45——mm— L______________________ C4.5+m+cf

C4.5+cf ———  C4.5+m

(b) Comparison of one classifier against the others with the BonfeBani test. All classifiers with ranks outside
the marked interval are significantly differemqt € 0.05) from the control.

Figure 1: Visualization of post-hoc tests for data from Table 6.

CD
6 5 4 3 2 1
! | ! | I | ! J
Information gain- ——Odds ratio
Mutual information Txt—— ——Cross entropy Txt
Term frequency Weight of evidence for text

Figure 2: Comparison of recalls for various feature selection measualysis of the results from
the paper by Mladefiiand Grobelnik (1999).

equivalent performances. The data is not sufficient to conclude wh#thtual information Txt
performs the same as Information gain or Term Frequency, and similafyhethTerm Frequency
is equivalent to Mutual information Txt or to the better three methods.

4. Empirical Comparison of Tests

We experimentally observed two properties of the described tests: thidatslity and the likeli-
hood of rejecting the null-hypothesis. Performing the experiments to armpwestions like “which
statistical test is most likely to give the correct result” or “which test has tvedd Type 1/Type 2
error rate” would be a pointless exercise since the proposed inferegialsuppose different kinds
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of commensurability and thus compare the classifiers from different esgéte “correct answer”,
rejection or non-rejection of the null-hypothesis, is thus not well determametis, in a sense,
related to the choice of the test.

4.1 Experimental Setup

We examined the behaviour of the studied tests through the experiments in wdidpeatedly
compared the learning algorithms on sets of ten randomly drawn data seecandid thep values
returned by the tests.

4.1.1 DATA SETS AND LEARNING ALGORITHMS

We based our experiments on several common learning algorithms and tiietiovs: C4.5, C4.5
with m and C4.5 with cf fitted for optimal accuracy, another tree learning iéhgotimplemented in
Orange (with features similar to the original C4.5), naive Bayesian lednaémodels continuous
probabilities using LOESS (Cleveland, 1979), naive Bayesian leariikrogntinuous attributes
discretized using Fayyad-Irani’s discretization (Fayyad and IraSi3Land kNN (k=10, neighbour
weights adjusted with the Gaussian kernel).

We have compiled a sample of forty real-world data $eiym the UCI machine learning
repository (Blake and Merz, 1998); we have used the data sets witledistdasses and avoided
artificial data sets like Monk problems. Since no classifier is optimal for alsiptes data sets,
we have simulated experiments in which a researcher wants to show partidukantages of a
particular algorithm and thus selects a corresponding compendium of etata\&/e did this by
measuring the classification accuracies of the classifiers on all data seévsirca by using ten-fold
cross validation. When comparing two classifiers, samples of ten data setsandomly selected
so that the probability for the data sdieing chosen was proportional tg(1+ e %), whered, is
the (positive or negative) difference in the classification accuraci¢isadrata set anklis the bias
through which we can regulate the differences between the classifitsereas ak = 0 the data
set selection is random with the uniform distribution, with higher valuels wé are more likely
to select the sets that favour a particular learning method. Note that chabsirdata sets with
knowing their success (as estimated in advance) is only a simulation, whilesesreher would
select the data sets according to other criteria. Using the describedprede practical evaluations
of algorithms would be considered cheating.

We decided to avoid “artificial” classifiers and data sets constructed spadigifior testing the
statistical tests, such as those used, for instance, by Dietterich (1898)ch experimental proce-
dures some assumptions need to be made about the real-world data setdearthithg algorithms,
and the artificial data and algorithms are constructed in a way that mimics thesaapgeal-world
situation in a controllable manner. In our case, we would construct two oe elassifiers with
a prescribed probability of failure over a set of (possible imaginary) dsets so that we could,

2. The data sets used are: adult, balance-scale, bands, breast (wierman), breast cancer (lju), breast cancer
(wisc), car evaluation, contraceptive method choice, credit scrgetémmatology, ecoli, glass identification, hayes-
roth, hepatitis, housing, imports-85, ionosphere, iris, liver disordeng cancer, lymphography, mushrooms, pima
indians diabetes, post-operative, primary tumor, promoters, rh@maervo, shuttle landing, soybean, spambase,
spect, spectf, teaching assistant evaluation, tic tac toe, titanic, votingfomayevine recognition, yeast.

3. The function used is the logistic function. It was chosen for its connésleape; we do not claim that such relation
actually occurs in practice when selecting the data sets for experiments.
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knowing the correct hypothesis, observe the Type 1 and 2 error ohtib® proposed statistical
tests.

Unfortunately, we do not know what should be our assumptions abou¢#hevorld. To what
extent are the classification accuracies (or other measures of suctEssmensurable? How
(ab)normal is their distribution? How homogenous is the variance? Mareibwee do make
certain assumptions, the statistical theory is already able to tell the resultse{gagments that
we are setting up. Since the statistical tests which we use are theoreticallyndefistood, we do
not need to test the tests but the compliance of the real-world data to thein@gss. In other
words, we know, from the theory, that the t-test on a small sample (that ia,small number of
data sets) requires the normal distribution, so by constructing an artifrerabament that will
yield non-normal distributions we can make the t-test fail. The real questwe\er is whether the
real world distributions are normal enough for the t-test to work.

Cannot we test the assumptions directly? As already mentioned in the descoiptie t-test,
the tests like the Kolmogorov-Smirnov test of normality are unreliable on smallleawhere they
are very unlikely to detect abnormalities. And even if we did have suitableaests disposal, they
would only compute the degree of (ab)normality of the distribution, non-hemeity of variance
etq and not the sample’s suitability for t-test.

Our decision to use real-world learning algorithms and data sets in unmodifiedpirevents
us from artificially setting the differences between them by making them intextityomisclassify
a certain proportion of examples. This is however compensated by our dnettszlecting the
data sets: we can regulate the differences between the learning algorghaffediing the data
set selection through regulating the biadn this way, we perform the experiments on real-world
data sets and algorithms, and yet observe the performance of the statisticgoas degrees of
differences between the classifiers.

4.1.2 MEASURES OFPOWER AND REPLICABILITY

Formally, the power of a statistical test is defined as the probability that theite&orrectly) reject
the false null-hypothesis. Since our criterion of what is actually false itegbta the selection of the
test (which should be based on the kind of differences between thdielssae want to measure),
we can only observe the probability of the rejection of the null-hypothedig;hwis nevertheless
related to the power.

We do this in two ways. First, we set the significance level at 5% and abgeitvow many
experiments out of one thousand does a particular test reject the noliiegis. The shortcoming
of this is that it observes only the behaviour of statistics at arguad.05 (which is probably what
we are interested in), yet it can miss a bigger picture. We therefore atsv\aul the average
values as another measure of “power” of the test: the lower the valuangttedikely it is for a test
to reject the null-hypothesis at a set confidence level.

The two measures for assessing the power of the tests lead to two relatedenesdgeplica-
bility. Bouckaert (2004) proposed a definition which can be used in ctinjuwith counting the
rejections of the null-hypothesis. He defined the replicability as the probabiitywlo experiments
with the same pair of algorithms will produce the same results, that is, that uehiments accept
or reject the null-hypothesis, and devised the optimal unbiased estimatds pfabability,

(e =¢g)

R(e) = ng _n(n—1)/2
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whereg is the outcome of theth experiment out ofi (g is 1 if the null-hypothesis is accepted, O if
it is not) andl is the indicator function which is 1 if its argument is true and 0 otherwise. Baertk
also describes a simpler way to compR@): if the hypothesis was accepted prand rejected in
g experiments out of, R(e) equals(p(p—1)+q(q—1))/n(n—1). The minimal value oR, 0.5,
occurs wherp = q = n/2, and the maximal, 1.0, when eithgor q is zero.

The disadvantage of this measure is that a statistical test will show a low fafiticerhen the
difference between the classifiers is marginally significant. When comp&vim¢ests of different
power, the one with results closer to the chogewill usually be deemed as less reliable.

When the power is estimated by the average ehlues, the replicability is naturally defined
through their variance. The variance pfs between 0 and 0.25; the latter occurs when one half of
p's equals zero and the other half equals tri@. allow for comparisons with Bouckaerf¥e), we
define the replicability with respect to the variancepas

72
R(p) = 1—2-var(p) = 12 P PS
n—-1

A problem with this measure of replicability when used in our experimentalepha® is that
when the biak increases, the variability of the data set selection decreases and shelgasance
of p. The size of the effect depends on the number of data sets. Judgee bgstiits of the
experiments, our collection of forty data sets is large enough to keep tiabiligy practically
unaffected for the used values lofsee the left graph in Figure 4.c; if the variability of selections
decreased, the variance ptould not remain constant).

The described definitions of replicability are related. Sih@e= e;) equals 1- (e — €j)?, we
can reformulatér(e) as

1_(3—9')2_ (a_e_)z_ .
n(n—l)/JZ _1_22 n(n—ll) _1_22 n(n—1)

From here, it is easy to verify that

R(e) =

1<i<)<n

si(e—8)?
Rle)=1-24——".
(€) 7
The fact that Bouckaert's formula is the optimal unbiased estimatd(®yris related tdy ; (e —
€)2/(n—1) being the optimal unbiased estimator of the population variance.

4.2 Comparisons of Two Classifiers

We have tested four statistics for comparisons of two classifiers: the pagston absolute and on
relative differences, the Wilcoxon test and the sign test. The experimengésran on 1000 random
selections of ten data sets, as described above.

The graphs on the left hand side of Figure 3 show the avegpragédues returned by the tests as
a function of the biak when comparing C4.5-cf, naive Bayesian classifier and kNN (note that th
scale is turned upside down so the curve rises when the power of thedesisas). The graphs
on the right hand side show the number of experiments in which the hypothasisejected at

4. Since we estimate the population variance from the sample variancesttheated variance will be higher by
0.25/(n—1). With any decent number of experiments, the difference is howegtigitge.
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o =5%. To demonstrate the relation between power (as we measure it) and Bdisakeasure of
replicability we have added the right axis that shd®ys) corresponding to the number of rejected
hypothesis.

Note that ak = 0 the number of experiments in which the null hypothesis is rejected is not 50%.
Lower settings ok do not imply that both algorithms compared should perform approximately
equally, but only that we do not (artificially) bias the data sets selection mufaone of them.
Therefore, ak = 0 the tests reflect the number of rejections of the null-hypothesis on a coipplete
random selection of data sets from our collection.

Both variations of the t-test give similar results, with the test on relative difiegs being
slightly, yet consistently weaker. The Wilcoxon signed-ranks test giugsh lowerp values and is
more likely to reject the null-hypothesis than t-tests in almost all cases. Theesigis, as known
from the theory, much weaker than the other tests.

The two measures of replicability give quite different results. JudgeR(lpy (graphs on the
left hand side of Figure 4), the Wilcoxon test exhibits the smallest variatiop \a#lues. For a
contrast, BouckaertRB(e) (right hand side of Figure 4) shows the Wilcoxon test as the least reliable.
However, the shape of the curves on these graphs and the right axigsiia 3 clearly show that
the test is less reliable (accordingR¢e)) when thep values are closer to 0.05, so the Wilcoxon test
seems unreliable due to its higher power keeping it closer to p=0.05 than draexts.

Table 7 shows comparisons of all seven classifiers wislet to 15. The numbers below the
diagonal show the averagevalues and the related replicabili®(p), and the numbers above the
diagonal represent the number of experiments in which the null-hypothasisejected ail = 5%
and the relatedR(e). The table again shows that the Wilcoxon test almost always returns fower
values than other tests and more often rejects the null hypothesis. Measwrep), the Wilcoxon
test also has the highest replicabiliB(e), on the other hand, again prefers other tests withlues
farther from the critical 0.05.

Overall, it is known that parametric tests are more likely to reject the null-hggithan the
non-parametric unless their assumptions are violated. Our results stiygjette latter is indeed
happening in machine learning studies that compare algorithms across coliegftidata sets. We
therefore recommend using the Wilcoxon test, unless the t-test assump#anstaeither because
we have many data sets or because we have reasons to believe that tbeeréaerformance
across data sets is distributed normally. The sign test, as the third alterimative, weak to be
generally useful.

Low values ofR(e) suggest that we should ensure the reliability of the results (especially when
the differences between classifiers are marginally significant) by rurthmgxperiments on as
many appropriate data sets as possible.

4.3 Comparisons of Multiple Classifiers

For comparison of multiple classifiers, samples of data sets were selected evipinotbabilities
computed from the differences in the classification accuracy of C4.5 @ind Bayesian classifier
with Fayyad-Irani discretization. These two classifiers were chosend@articular reason; we
have verified that the choice has no practical effect on the results.

Results are shown in Figure 5. When the algorithms are more similar (at smailes \zdKk),
the non-parametric Friedman test again appears stronger than the perafid@VA. At greater
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—— T-test —+— T-test(rel) —o— Wilcoxon —=— Sign test
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Figure 3. Power of statistical tests for comparison of two classifiers. Leftalues as a func-
tion of bias k). Right: number of times the hypothesis was rejected (left axis) and the
Bouckaert'sR (right axis).
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—— T-test —=— T-test(rel)
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(b) C45-cf vs. KNN
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Figure 4: Replicability of tests for comparison of two classifiers: varidresedR(p) (left) and

Bouckaert'sR(e) (right).
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c45 c45-m  c45-cf tree bayes disc-bayes knn
c45 154/.74 709/.59 818/.70 178/.71 0/1.00 151/.74
c45-m| .16/.96 307/.57 909/.83 300/.58 0/1.00 376/.53
c45-cf| .05/.99 .10/.98 758/.63 335/.55 0/1.00 167/.72
tree| .04/.98 .02/1.00 .05/.98 679/.56  162/.73  592/.52
bayes| .15/.96 .12/97 .11/.97 .05/.99 0/1.00 2/1.00
disc-bayes .41/.92 .20/.95 .28/.92 .18/.94 .20/.97 981/.96
knn| .16/.96 .10/.98 .14/97 .06/.99 .35/.94 .01/1.00
(a) Paired t-test
c45 c45-m  c45-cf tree bayes disc-bayes knn
c45 75/.86 592/.52 809/.69 181/.70 0/1.00 184/.70
c45-m| .17/.96 238/.64 848/.74 314/.57 0/1.00 438/.51
c45-cf| .06/.99 .11/.98 729/.60 361/.54 0/1.00 216/.66
tree| .04/.99 .03/1.00 .06/.98 662/.55 79/.85 584/.51
bayes| .16/.95 .12/97 .11/.97 .05/.99 0/1.00 1/1.00
disc-bayes .36/.94 .20/.96 .27/.94 .19/.95 .24/.98 970/.94
knn | .14/96 .09/.98 .13/97 .06/.99 .35/95 .01/1.00
(b) Paired t-test on relative differences
c45 c45-m  c45-cf tree bayes disc-bayes knn
c45 521/.50 884/.79 897/.82 662/.55 81/.85 618/.53
c45-m| .08/.98 774/.65 983/97 710/.59 351/.54 750/.62
c45-cf| .03/1.00 .04/.99 854/.75 804/.68 172/.71 720/.60
tree| .02/1.00 .01/1.00 .03/1.00 915/.84  521/.50 920/.85
bayes| .06/.99 .05/.99 .04/99 .02/1.00 94/.83 102/.82
disc-bayes .22/.96 .11/98 .16/.97 .08/.98 .18/.97 999/1.00
knn| .07/.98 .04/.99 .05/.99 .02/1.00 .22/.96 .00/1.00
(c) Wilcoxon signed-ranks test
c45 c45-m  c45-cf tree bayes disc-bayes knn
c45 157/.74 323/.56 653/.55 171/.72 48/.91 110/.80
c45-m| .21/.90 205/.67 863/.76 299/.58 156/.74  256/.62
c45-cf| .10/.98 .16/.93 513/.50 423/51 95/.83 229/.65
tree| .05/.99 .02/1.00 .09/.97 460/.50 210/.67  486/.50
bayes| .19/.89 .13/.94 .08/.97 .08/.97 0/1.00 1/1.00
disc-bayes .29/.89 .18/.93 .25/.89 .18/.93 .52/.78 850/.74
knn| .25/.85 .14/.93 .15/93 .07/.97 .45/86 .01/1.00
(d) Sign test

Table 7: Tests for comparisons of two classifiers: avegagalues andR(p) (below diagonal), and
the number of null-hypothesis rejections &Ri@) (above diagonal).
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—+—— ANOVA ———  Friedman test
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(a) Averagep values (left axis) andR(p) (no symbols (b) Number of experiments in which the null-
on lines, right axis) hypothesis was rejected (left axis) and the correspond-

ing R(e) (no symbols on lines, right axis)

Figure 5: Comparison of ANOVA and Friedman test

differences between the algorithmsat around 10, in our experimental setup), ANOVA catches up
and the two tests give similar results.

Replicability of the Friedman test is higher than that of ANOVA when measuyeR( p) and,
due to the similar power of the tests, comparable when measurBdeby Altogether, replicabil-
ity seems somewhat smaller than the replicability of the tests for comparisons aldssifiers.
Therefore, as common sense would suggest, when comparing multiple etasgifis even more
important to conduct the tests on as many data sets as possible.

Figure 6 shows the comparison between the parametric Tukey and thewramgiric Nemenyi
test. We counted the number of times they rejected the equivalence of Cang-ohive Bayesian
classifier and the equivalence of C4.5-cf and kNN (the comparison battie naive Bayesian clas-
sifier and KNN, which was included in previous tests, was less interestiog #ie null hypothesis
was very seldom rejected). The two graphs on the left representimgrgs in which the selec-
tion was based on the differences between the two algorithms comparedgraphe while for the
right two graphs we used differences between the C4.5-cf and thegavef the other six classifiers
tested. In all cases, we have compared all seven algorithms, but et saty the number of rejec-
tions for the pair on the graph. The non-parametric test again more ofgetsréhe null-hypothesis
than the parametric one.

We do not show the values and the corresponding replicabilities since they cannot always be
computed or compared in all procedures due to different orders ofdestin

Figure 7 compares post hoc tests for comparisons with a control class#ieg the same two
ways of selecting data sets as in Figure 6. When the differences argttzegeower of all tests is
comparable, while when they are smaller the number of rejections for theparatest seems to
lag behind (we have observed this same pattern on other combinations ofhaig). The order
of the non-parametric tests is as expected from the theory, although it isstitey to note that the
Holm and Hochberg tests give practically equal results.
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—+— Tukey o— Nemenyi
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(a) C45-cf vs. naive Bayes
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(b) C45-cf vs. kNN

Figure 6: Power of statistical tests for comparison of multiple classifiers. iBidsfined by the
difference in performance of the two classifiers on the graph (left) wvden the C4.5-cf
and all other classifiers (right). The left scale on each graph givesuhmer of times
the hypothesis was rejected and the right scale gives the corresp@iding

These experiments again seem to favour the non-parametric tests ovardhgefric ones al-
though not always as convincingly as in the case of comparisons of twsiftdsis. Due to the
theoretical and practical advantages of the Friedman test (ease of ctiopatad interpretation,
the ability to present the overall performance of classifiers in form déig@mstead of the dubious
averages), the Friedman test should be preferred over ANOVA. dinesponding non-parametric
post-hoc tests give similar results, so it is upon the researcher to decetkewtthe slightly more
powerful Hommel test is worth the complexity of its calculation as compared to tloh simpler
Holm test.
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—+— Dunnett —— Bonferroni —*— Holm —+— Hochberg —e— Hommel
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Figure 7: Power of statistical tests for comparison of multiple classifiers witbn&ra. Bias is
defined by the difference in performance of the two classifiers on thghdteft) or be-
tween the C4.5-cf and the average of all other classifiers (right). Thedafe on each
graph gives the number of times the hypothesis was rejected and the atghgaes the
corresponding BouckaertR.

5. Conclusion

Our analysis of the papers from the past International Conferemcohine Learning has shown
that many authors feel that the algorithms they propose should be congyared set of problems
and that the results can be used for drawing general conclusionse iEHewever no golden stan-
dard for making such comparisons and the tests performed often haeeisistatistical foundations
and lead to unwarranted and unverified conclusions.

While comparisons using a single data set are pestered by the biasede@simations due
to dependencies between the samples of examples drawn from the dataceemparisons over
multiple data set the variance comes from the differences between the thatatseh are usually
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independent. Our setup is therefore free from the elevated Typertlestas common on the single
data set testing procedures. The problems with the multiple data set teststardifgrent, even
in a sense complementary: the measurements from different data setsalhg imsommensurate,
and the normality of their distributions and the homogeneity of variance is qnabtat best.

We theoretically and empirically analyzed three families of statistical tests thdtecased for
comparing two or more classifiers over multiple data sets: parametric tests {ted ptest and
ANOVA), non-parametric tests (the Wilcoxon and the Friedman test) and th@a@metric test
that assumes no commensurability of the results (sign test). In the theoretitakp specifically
discussed the possible violations of the tests’ assumptions by a typical madrimieg data. Based
on the well known statistical properties of the tests and our knowledge ofdlbine learning data,
we concluded that the non-parametric tests should be preferred oyeartmaetric ones.

We have observed the behaviour of the proposed statistics on sesadralarld classifiers and
data sets. We varied the differences between the classifiers by biasiagl¢éicdon of data sets,
and measured the likelihood of rejection of the null-hypothesis and the reitiigaf the test. We
have indeed found that the non-parametric tests are more likely to rejeailthe/pothesis, which
hints at the presence of outliers or violations of assumptions of the paratestiscand confirms
our theoretical misgivings about them. The empirical analysis also showseftiability of the
tests might be a problem, thus the actual experiments should be conductedhamyadata sets as
possible.

In the empirical study we provided no analysis of Type 1/Type 2 erros rdtee main reason for
this is that the correct result—rejection or non-rejection of the null-hymitheis not well defined
and depends upon the kind of difference between the algorithms we intendasure. Besides,
conducting the experiments in which we knew the true hypotheses wouldeeqtificial data sets
and classifiers with the prescribed probabilities and distributions of efforghis we would need to
make some assumptions about the real-world distributions; these assumpgidmangever, exactly
what we were testing in the first place.

Overall, the non-parametric tests, namely the Wilcoxon and Friedman testitaieles for our
problems. They ar@ppropriatesince they assume some, but limited commensurability. They
are safer than parametric testsince they do not assume normal distributions or homogeneity of
variance. As such, they can be applied to classification accuraciesraios or any other measure
for evaluation of classifiers, including even model sizes and computation. tigmapirical results
suggest that they are alstronger than the other tests studiethe latter is particularly true when
comparing a pair of classifiers.

We have proposed a visual representation of the post-hoc analysismdigple classifiers are
compared. CD diagrams are “space-friendly” and thus suitable whenrtpthlef the paper is an
issue, yet they present the order of the algorithms, the magnitude ofediffes between them (in
terms of ranks) and the significance of the observed differences muehatearly than it can be
done in textual or in a pure numerical form.

There is an alternative opinion among statisticians that significance testisl stailbe per-
formed at all since they are often misused, either due to misinterpretation arttiyygotoo much
stress on their results (Cohen, 1994; Schmidt, 1996; Harlow and Mulg®)1 Our stance is that
statistical tests provide certain reassurance about the validity and ndoanaess of the published
results. For that to be true, they should be performed correctly andghking conclusions should
be drawn cautiously. On the other hand, statistical tests should not beditkndefactor for or
against publishing the work. Other merits of the proposed algorithm thdtesiend the grasp of
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statistical testing should also be considered and possibly even favoteeduwe improvements in
predictive power.
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