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Selfish Routing – Motivation

Many agents want to use
shared resources

Each of them is selfish
and rational
(i.e. maximizes his profit)

Examples: Users of a computer
network, drivers on roads

How they are going to behave?

How much is lost by letting
agents behave selfishly on their
own?
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Example: Routing in Computer Networks

Imagine a computer network, i.e., computers connected by links.

There are several users, each user wants to route packets from
a source computer zi to a target computer ti . For this, each user i
needs to choose a path in the network from zi to ti .

We assume that the more agents try to route their messages through
the same link, the more the link gets congested and the more costly
the transmission is.

Now assume that the users are selfish and try to minimize their cost
(typically transmission time). How would they behave?
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Atomic Routing Games
The network routing can be formalized using an atomic routing game
that consists of

I a directed multi-graph G = (V ,E, δ),
Here V is a set of vertices, E is a set of edges, δ : E → V × V so that if
δ(e) = (u, v) then e leads from u to v. The multigraph G models
the network.

I n pairs of source-target vertices (z1, t1), . . . , (zn, tn) where
z1, . . . , zn, t1, . . . , tn ∈ V ,
(Each pair (zi , ti) corresponds to a user who wants to route from zi to ti)

I for each e ∈ E a cost function ce :N→ R such that ce(m) is
the cost of routing through the link e if the amount of traffic
through e is m.

Each user i chooses a simple path from zi to ti and pays the sum of
the costs of the links on the path.

An atomic routing game is symmetric if z1 = · · · = zn and t1 = · · · = tn.
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Atomic Routing Games

Here we assume at most three users. Each edge is labeled by the cost if one,
two, or all three users route through the edge, respectively.

Here we consider a symmetric case with three users, each has
the source z and target t .
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Atomic Routing Games

Here, e.g., the red user pays 3 + 2 = 5 :

I 3 for the first step from z (he shares the edge with the blue one)

I 2 for the second step to t (he is the only user of the edge)

Atomic routing games are usually studied as a special case of
so called (atomic) congestion games.
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Congestion Games

A congestion game is a tuple G = (N,R , (Si)i∈N , (cr )r∈R) where
I N = {1, . . . ,n} is a set of players,
I R is a set of resources,
I each Si ⊆ 2R r {∅} is a set of pure strategies for player i,
I each cr :N→ R is a cost function for a resource r ∈ R.

Notation: S = S1 × · · · × Sn and c = (c1, . . . , cn).

Intuition:
I Each player allocates a set of resources by playing a pure

strategy si ⊆ R.
I Then each player "pays" for every allocated resource r ∈ si

based on cr and the number of other players who demand
the same resource r :
I If ` players use the resource r , then each of them pays cr (`)

for this particular resource r .
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Congestion Games: Payoffs and Nash Equilibria

Let # : R × S →N be a function defined for r ∈ R and
s = (s1, . . . , sn) ∈ S by #(r , s) = | {i ∈ N | r ∈ si} |.
I.e., #(r , s) is the number of players using the resource r in the strategy
profile s.

We define the payoff for player i by

ui(s) = −
∑
r∈si

cr (#(r , s)) (28)

Intuitively, the more congested a resource r ∈ si is, the more player i has to
pay for it.

Definition 83
Nash equilibria are defined as usual, a pure strategy profile
(s1, . . . , sn) ∈ S is a Nash equilibrium if for every player i and
every s′i ∈ Si we have ui(si , s−i) ≥ ui(s′i , s−i).
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Atomic Routing Games and Congestion Games

Given an atomic routing game we may model it as a congestion
game (N,R , (Si)i∈N , (cr )r∈R) :
I Players N = {1, . . . ,n} correspond to the pairs of

source-target vertices (z1, t1), . . . , (zn, tn),
I resources are edges in the multigraph G, i.e, R = E,
I the set of pure strategies Si of player i consists of all

simple paths (i.e., sets of edges) in the multigraph G from
his source zi to his target ti ,

I the cost function ce of each edge e ∈ E has to be
determined according to the properties of the network.
Often (but not always) a linear (affine) function ce(x) = aex + be is used
(here x is the number of players using the edge e).

Now each Nash equilibrium in G corresponds to a stable
situation where no user wants to change his behavior.
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Solving Congestion Games

We consider the following questions:

I Are there pure strategy Nash equilibria?

I Can the agents "learn" to use the network?

I How difficult is to compute an equilibrium?
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Learning: Myopic Best-Response
Given a pure strategy profile s = (s1, . . . , sn), suppose that some
player i has an alternative strategy s′i such that ui(s′i , s−i) > ui(si , s−i).
Player i can switch (unilaterally) from si to s′i improving thus his
payoff. Iterating such improvement steps, we obtain the following:

Myopic best response procedure:
I Start with an arbitrary pure strategy profile s = (s1, . . . , sn).
I While there exists a player i for whom si is not a best response

to s−i do
I s′i := a best-response by player i to s−i
I s := (s′i , s−i)

I return s

By definition, if the myopic best response terminates, the resulting
strategy profile s is a Nash equilibrium.

There is a strategic-form game where it does not terminate.

Theorem 84
For every congestion game, the myopic best response terminates in
a Nash equilibrium for an arbitrary starting pure strategy profile.
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Complexity of Congestion Games

For concreteness, assume cr (j) = ar · j + br where ar ,br are some
non-negative constants.

Myopic best response can be used to compute Nash equilibria but
how many steps it makes?
A naive bound would be the number of strategy profiles which is exponential
in the number of players.

Assume that the cost functions have values inN. Then the myopic
best response procedure starting in s stops after at most∑

r∈R
∑#(r ,s)

j=1 cr (j) steps. This gives a pseudo-polynomial time
procedure.

How many steps are really needed? On some instances any
sequence of improvement steps to NE is of exponential length.

In fact, the problem of computing NE in congestion games is PLS-complete.
PLS class (Polynomial Local Search) models the difficulty of finding a locally
optimal solution to an optimization problem (e.g. travelling salesman is
PLS-complete).
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Complexity of Atomic Routing Games

Finding Nash equilibria in Atomic Routing Games is
PLS-complete even if the cost functions are linear.

There is a polynomial time algorithm for symmetric atomic
routing games with non-decreasing cost functions based on
a reduction to the minimum-cost flow problem.
Here symmetric means that all players have the same source z and the same
target t . Hence they also choose among the same simple paths.
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Non-Atomic Selfish Routing

I So far we have considered situations where each player
(user, driver) has enough "weight" to explicitly influence
payoffs of others (so a deviation of one player causes
changes in payoffs of other players).

I In many applications, especially in the case of highway
traffic problems, individual drivers have negligible influence
on each other. What matters is a "distribution" of drivers on
highways.

I To model such situations we use non-atomic routing
games that can be seen as a limiting case of atomic selfish
routing with the number of players going to ∞.

290



Non-Atomic Routing Games

A Non-Atomic Routing Game consists of
I a directed multigraph G = (V ,E, δ),
I n source-target pairs (z1, t1), . . . , (zn, tn),
I for each i = 1, . . . ,n, the amount of traffic µi ∈ R≥0 from zi

to ti ,
I for each e ∈ E a cost function ce : R≥0 → R such that

ce(x) is the cost of routing through the link e if the amount
of traffic on e is x ∈ R≥0.

For i = 1, . . . ,n, let Pi be the set of all simple paths from zi to ti .
Intuitively, there are uncountably many players, represented by [0, µi ], going
from zi to ti , each player chooses his path so that his total cost is minimized.

Assume that Pi ∩ Pj = ∅ for i , j.
(This also implies that for all i , j we have that either zi , zj , or ti , tj .)
Denote by P the set of all "relevant" simple paths

⋃n
i=1Pi .

Question: What is a "stable" distribution of the traffic among
paths of P ?
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Non-Atomic Routing Games
A traffic distribution d is a function d : P → R≥0 such that∑

p∈Pi
d(p) = µi . Denote by D the set of all traffic distributions.

Let us fix a traffic distribution d ∈ D.

Given an edge e ∈ E, we denote by g(d,e) the amount of congestion
on the edge e :

g(d,e) =
∑

p∈P : e∈p

d(p)

Given p ∈ P, the payoff for players routing through p ∈ P is defined by

u(d,p) = −
∑
e∈p

ce(g(d,e))

Definition 85
A traffic distribution d ∈ D is a Nash equilibrium if for every i = 1, . . . ,n
and every path p ∈ Pi such that d(p) > 0 the following holds:

u(d,p) ≥ u(d,p′) for all p′ ∈ Pi
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Price of Anarchy

Theorem 86
Every non-atomic routing game has a Nash equilibrium.

We define a social cost of a traffic distribution d by

C(d) =
∑
p∈P

d(p) · (−u(d,p)) =
∑
p∈P

d(p) ·
∑
e∈p

ce(g(d,e))

Theorem 87
All Nash equilibria in non-atomic routing games have the same
social cost.

A price of anarchy is defined by

PoA =
C(d∗)

mind C(d)
where d∗ is a (arbitrary) Nash equilibrium

Intuitively, PoA is the proportion of additional social cost that is
incurred because of agents’ self-interested behavior.
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Price of Anarchy

Theorem 88 (Roughgarden-Tardos’2000)
For all non-atomic routing games with linear cost functions holds

PoA ≤
4
3

and this bound is tight (e.g. the Pigou’s example).

The price of anarchy can be defined also for atomic routing games:

PoAatom :=
maxs∗ is NE

∑n
i=1(−ui(s∗))

mins∈S
∑n

i=1(−ui(s))

(Intuitively,
∑n

i=1(−ui(s)) is the total amount paid by all players playing
the strategy profile s.)

Theorem 89 (Christodoulou-Koutsoupias’2005)
For all atomic routing games with linear cost functions holds

PoAatom ≤
5
2

(which is again tight, just like 4
3 for non-atomic routing.)
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Braess’s Paradox
For an example see the green board.

Real-world occurences (Wikipedia):

I In Seoul, South Korea, a speeding-up in traffic around the city was seen
when a motorway was removed as part of the Cheonggyecheon
restoration project.

I In Stuttgart, Germany after investments into the road network in 1969,
the traffic situation did not improve until a section of newly built road
was closed for traffic again.

I In 1990 the closing of 42nd street in New York City reduced the amount
of congestion in the area.

I In 2012, scientists at the Max Planck Institute for Dynamics and
Self-Organization demonstrated through computational modeling the
potential for this phenomenon to occur in power transmission networks
where power generation is decentralized.

I In 2012, a team of researchers published in Physical Review Letters
a paper showing that Braess paradox may occur in mesoscopic electron
systems. They showed that adding a path for electrons in a nanoscopic
network paradoxically reduced its conductance.
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