

Convex hull in 2D

Before we start ...

- Link to study materials of Geometric algorithms course
- https://is.muni.cz/auth/do/sci/UMS/el/geome tricke-alg/index.html

Convex hull

- Set M is convex if a line segment connecting its two arbitrary points fully lies inside M

- Convex hull of a set of points X in the Euclidean space corresponds to the smallest convex set containing X

Convex hull

- Input: n points on a plane

Convex hull

- Convex hull in 2D:
= convex polygon
- Represented by an ordered sequence of vertices (counter clockwise)
- Convex hull in 3D:
= convex polyhedron
- Represented by a planar graph

Convex hull - algorithms

- Gift Wrapping (Jarvis March)
- Graham Scan
- Incremental algorithm
- Divide and conquer

Gift wrapping (Jarvis March)

- Resembles wrapping gifts, proposed by Jarvis (1973)
- Simple implementation and extension to 3D
- Assumption: set X does not contain three colinear points
- Complexity: Preprocessing $O(n)$, algorithm $O\left(n^{2}\right)$

Gift wrapping (Jarvis March)

- Principle:
- Find pivot $q\left(q=\max \left(y_{j}\right)\right)$
- Add q to the convex hull H
$-p_{j-1}=$ arbitrary point on \times axis, $p_{j}=q, p_{i}=p_{j-1}$
- Repeat until $p_{i} \neq q$:
- Repeat $\forall p_{i} \notin H$ and points p_{j-1}, p_{j} :
- Find p_{i} for that the angle $\Theta=\min \left(\Theta_{i}\right)$
- Add p_{i} to H
- $p_{j-1}=p_{j}, p_{j}=p_{i}$

Gift wrapping (Jarvis March)

Gift wrapping (Jarvis March)

Implementation

- We find point P with the highest x-axis value this is one of the vertices of the convex hull
- In this point P we determine so called separating line (often parallel to y axis). All points in the input set lie in the same halfplane, determined by the separating line

Implementation

- From P we shoot rays heading to all other points of the input set

Implementation

- We select a ray which has the minimal angle with the first (separating) line. We have next vertext of the convex hull (2)

Implementation

- New edge of the convex hull is 1-2

Implementation

- Repeat this until we will reach the first point P again

Implementation

