

Convex hull in 2D

www.codeproject.com

Before we start ...

- Link to study materials of Geometric algorithms course
- <u>https://is.muni.cz/auth/do/sci/UMS/el/geome</u> <u>tricke-alg/index.html</u>

Convex hull

• Set M is **convex** if a line segment connecting its two arbitrary points fully lies inside M

 Convex hull of a set of points X in the Euclidean space corresponds to the smallest convex set containing X

Convex hull

• Input: *n* points on a plane

Convex hull

- Convex hull in 2D:
 - = convex polygon
 - Represented by an ordered sequence of vertices (counter clockwise)

- Convex hull in 3D:
 - = convex polyhedron
 - Represented by a **planar graph**

Convex hull – algorithms

- Gift Wrapping (Jarvis March)
- Graham Scan
- Incremental algorithm
- Divide and conquer

- Resembles wrapping gifts, proposed by Jarvis (1973)
- Simple implementation and extension to 3D
- Assumption: set X does not contain three colinear points
- Complexity: Preprocessing O(n), algorithm
 O(n²)

• Principle:

- Find pivot $q (q = \max(y_i))$
- Add q to the convex hull H
- $-p_{j-1}$ = arbitrary point on x axis, $p_j = q$, $p_i = p_{j-1}$
- Repeat until $p_i \neq q$:
 - Repeat ∀p_i ∉ H and points p_{j-1}, p_j:
 Find p_i for that the angle Θ = min(Θ_i)
 - Add p_i to H
 - $p_{j-1} = p_j, p_j = p_i$

- We find point *P* with the highest *x*-axis value this is one of the vertices of the convex hull
- In this point *P* we determine so called separating line (often parallel to *y* axis). All points in the input set lie in the same half-plane, determined by

the separating line

 From P we shoot rays heading to all other points of the input set

х

• We select a ray which has the minimal angle with the first (separating) line. We have next vertext of the convex hull (2)

• New edge of the convex hull is 1-2

Repeat this until we will reach the first point P again

