
www.ceremade.dauphine.fr

Triangulation

www.cescg.org

Triangulation

- Dividing a polygon to a set of triangles
- Often with the constrain that each triangle edge is fully shared by two triangles
- In 1925 it was proved that each surface can be triangulated

Usage of triangulation

- Cartography, GIS
- Image processing - segmentation, pattern recognition
- Creating spatial models from laser scanning
- Spatial data visualization
- Finite element level set method - analysis of material structure and properties, simulation
- Robot motion planning
- Simulation of natural phenomena - erosion
- Interpolation - transfer of point clouds to surfaces
- Biometry - fingerprints detection

Usage of triangulation

Triangulation

- Set of triangles $T=T_{j}, i=1, \ldots, n$ is considered to be a triangulation when:
- an arbitrary pair of triangles from T mutually intersects in one common vertex or along a common edge
- union of triangles from T is a continuous set
- Generally, the input is a continuous polygon which does not have to be necessarily convex and can contain holes

Triangulation

- Triangulation of a simple polygon $\mathrm{P}=$ dividing P to triangles by a set of non-intersecting lines, connecting two vertices from P and fully lying inside P
- Triangulation is mostly non-unique

Triangulation

- Triangulation is the basic problem of computational geometry - dividing complex objects to simple ones
- The most simple objects are triangles in 2D (a tetrahedra in 3D)

Triangulation

- There are several types of triangulation, e.g.:
- Delaunay triangulation - from all existing triangulations it has the smallest sum of the lenghts of all its edges, it is dual to the Voronoi diagram

Triangulation

- For a given set of points (or a polygon) there are several possible triangulations. But all of them have the same number of triangles - triangulated polygon with n edges has $n-2$ triangles.
- Some polygons can be triangulated easily - e.g., convex ones
- Non-convex polygons have to be divided to socalled monotone polygons. These can be then easily triangulated.

Greedy triangulation

- Naïve approach
- Creates all potential edges, sorts them according their length in an ascending order (the number of these edges is $n(n-1) / 2$)
- The edges are one by one added to the resulting triangulation, we start with the shortest one
- The algorithm ends when the list of edges is empty or when the number of edges in the triangulation is $3 n-6$

Greedy triangulation

- Criterion for adding the edge:
- Edge is added when it does not intersect with any other edge already present in the triangulation

Greedy triangulation

repeat for all $p_{i}, i \in[1, n]$:
repeat for $j \in[i+1, n]$:
create edge $e=\left(p_{i}, p_{j}\right)$
for e compute $d=\operatorname{dist}\left(p_{j}, p_{j}\right)$ and store to Q
sort Q according to d
remove $Q[0]$ and add it to T until Q not empty
$e=p o p(Q)$
repeat for all $e_{i} \in T$:
test if e intersects with $e_{i} \in T$
if e does not intersect with any $e_{i} \in T$: add e to T

Greedy triangulation

- Triangles do not have to fulfill any special condition - the triangulation can contain "ugly" triangles

- Complexity $O\left(n^{3}\right)$, can be optimized to $O\left(n^{2} \log n\right)$

Triangulation using sweep line

- For simplicity lets assume that we are triangulating a monotone polygon

Monotone polygon

- Polygon is monotone when its intersection with each horizontal line is convex (it is empty set, point, or line) - the orientation of the polygon matters!

Triangulation using sweep line

- $1^{\text {st }}$ step: Lexicographically sort the vertices of the convex hull

$$
p>q \Leftrightarrow p_{y}>q_{y} \text { or } p_{y}=q_{y} \text { and } p_{x}<q_{x}
$$

Triangulation using sweep line

- We determine the left and right path (split at minimal and maximal point according to lexicographical sorting) - they are stored in two queues
left path

Triangulation using sweep line

- Algorithm is trying to create new triangle always when the sweep line intersects with a vertex of the polygon
- We use another data structure - stack. It will contain vertices above the sweep line (already traversed ones), which were not yet triangulated

Triangulation using sweep line

sort vertices $v_{1}, v_{2}, \ldots, v_{n}$ lexicographically
put v_{1}, v_{2} to stack
for $i=3$ to n :
if v_{i} and the top of the stack lie on the same path (left or right)
add edges $v_{i} v_{j} \ldots, v_{i} v_{k}$, where v_{k} is the last vertex forming the "correct" line pop v_{j}, \ldots, v_{k-1} and push v_{i}
else
add edges from v_{i} to all vertices stored in stack and remove (pop) them from stack
store $v_{\text {top }}$
push $v_{\text {top }}$ and v_{i}

Triangulation using sweep line

First branch of the if condition: Stack will contain (bot, ..., $\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{\mathrm{i}}$)

Triangulation using sweep line

else branch of the if condition:
Stack will contain ($\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{i}}$)

Triangulation using sweep line

Yet another example

$$
\begin{gathered}
\left.\left|\begin{array}{l}
u_{3} \\
u_{2}
\end{array}\right| \rightarrow\left|\begin{array}{l}
u_{4} \\
u_{3} \\
u_{2}
\end{array}\right| \rightarrow\left|\begin{array}{l}
u_{5} \\
u_{4} \\
u_{3} \\
u_{2}
\end{array}\right| \rightarrow\left|\begin{array}{l}
u_{2} \\
u_{5} \\
u_{4} \\
u_{3} \\
u_{2}
\end{array}\right| \rightarrow\left|\begin{array}{l}
u_{6} \\
u_{6} \\
u_{4} \\
u_{3} \\
u_{2}
\end{array}\right| \rightarrow\left|\begin{array}{l}
u_{6} \\
u_{3} \\
u_{2}
\end{array}\right| \rightarrow\left|\begin{array}{l}
u_{7} \\
u_{6} \\
u_{3} \\
u_{2}
\end{array}\right| \rightarrow \right\rvert\, \begin{array}{l}
u_{7} \\
u_{6}
\end{array} \\
u_{2}
\end{gathered}
$$

Time complexity

- Each vertex is added to the stack only once when "visited", it is removed from stack
- In each step we add at least one edge
- Total triangulation time: $O(n \log n)$

Your assignment

- Implement the sweep line algorithm for polygon triangulation
- Our input data:
- Convex hull (created in previous assignments)
- Arbitrary polygon (has to be added to the basic framework - simple connection of points added by the user to the scene. We connect them in the same order as they were inserted to the scene + connecting the first and last point to close the polygon. We skip the test for monotonity (we assume that the user creates a monotone polygon, if not, we are fine with wrong result ©)

