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Triangulation

• Dividing a polygon to a set of triangles

• Often with the constrain that each triangle 
edge is fully shared by two triangles

• In 1925 it was proved that each surface can be 
triangulated



Usage of triangulation

• Cartography, GIS

• Image processing – segmentation, pattern recognition

• Creating spatial models from laser scanning

• Spatial data visualization

• Finite element level set method – analysis of material 
structure and properties, simulation

• Robot motion planning

• Simulation of natural phenomena – erosion

• Interpolation – transfer of point clouds to surfaces

• Biometry – fingerprints detection



Usage of triangulation



Triangulation

• Set of triangles T = Ti, i = 1, …, n is considered to 
be a triangulation when:
– an arbitrary pair of triangles from T mutually 

intersects in one common vertex or along a common 
edge

– union of triangles from T is a continuous set

• Generally, the input is a continuous polygon 
which does not have to be necessarily convex and 
can contain holes



Triangulation

• Triangulation of a simple polygon P = dividing 
P to triangles by a set of non-intersecting 
lines, connecting two vertices from P and fully 
lying inside P

• Triangulation is mostly non-unique



Triangulation

• Triangulation is the basic problem of
computational geometry – dividing complex
objects to simple ones

• The most simple objects are triangles in 2D (a 
tetrahedra in 3D)



Triangulation

• There are several types of triangulation, e.g.:

– Delaunay triangulation – from all existing
triangulations it has the smallest sum of the
lenghts of all its edges, it is dual to the Voronoi
diagram



Triangulation

• For a given set of points (or a polygon) there are 
several possible triangulations. But all of them 
have the same number of triangles – triangulated 
polygon with n edges has n – 2 triangles.

• Some polygons can be triangulated easily – e.g.,
convex ones

• Non-convex polygons have to be divided to so-
called monotone polygons. These can be then 
easily triangulated.



Greedy triangulation

• Naïve approach

• Creates all potential edges, sorts them according 
their length in an ascending order (the number of 
these edges is n(n-1)/2)

• The edges are one by one added to the resulting 
triangulation, we start with the shortest one

• The algorithm ends when the list of edges is 
empty or when the number of edges in the 
triangulation is 3n – 6



Greedy triangulation

• Criterion for adding the edge:

– Edge is added when it does not intersect with any 
other edge already present in the triangulation



Greedy triangulation

repeat for all pi, i ∈ [1, n]:
repeat for j ∈ [i + 1, n]:

create edge e = (pi, pj)
for e compute d = dist(pi, pj) and store to Q

sort Q according to d
remove Q[0] and add it to T
until Q not empty

e = pop(Q)
repeat for all ei ∈ T:

test if e intersects with ei ∈ T
if e does not intersect with any ei ∈ T:

add e to T



Greedy triangulation

• Triangles do not have to fulfill any special 
condition – the triangulation can contain 
“ugly” triangles

• Complexity O(n3), can be optimized to       
O(n2 log n)



Triangulation using sweep line

• For simplicity lets assume that we are 
triangulating a monotone polygon 



Monotone polygon

• Polygon is monotone when its intersection 
with each horizontal line is convex (it is empty 
set, point, or line) – the orientation of the 
polygon matters!



Triangulation using sweep line

• 1st step: Lexicographically sort the vertices of 
the convex hull

p > q py > qy or py = qy and px < qx



Triangulation using sweep line

• We determine the left and right path (split at 
minimal and maximal point according to 
lexicographical sorting) – they are stored in 
two queues

left path right path



Triangulation using sweep line

• Algorithm is trying to create new triangle 
always when the sweep line intersects with a 
vertex of the polygon

• We use another data structure – stack. It will 
contain vertices above the sweep line (already 
traversed ones), which were not yet 
triangulated



Triangulation using sweep line

sort vertices v1, v2, …, vn lexicographically
put v1, v2  to stack
for i = 3 to n:

if vi and the top of the stack lie on the same path (left or right)
add edges vivj, …, vivk, where vk is the last vertex 
forming the “correct” line
pop vj, …, vk-1 and push vi

else
add edges from vi to all vertices stored in stack and 
remove (pop) them from stack
store vtop

push vtop and vi



Triangulation using sweep line

First branch of the if condition:

Stack will contain (bot, …, vk, vi) 



Triangulation using sweep line

else branch of the if condition:

Stack will contain (vj, vi) 



Triangulation using sweep line



Yet another example



Time complexity

• Each vertex is added to the stack only once –
when “visited”, it is removed from stack

• In each step we add at least one edge

• Total triangulation time: O(n log n)



Your assignment

• Implement the sweep line algorithm for polygon 
triangulation

• Our input data:
– Convex hull (created in previous assignments)

– Arbitrary polygon (has to be added to the basic 
framework – simple connection of points added by 
the user to the scene. We connect them in the same 
order as they were inserted to the scene + connecting 
the first and last point to close the polygon. We skip 
the test for monotonity (we assume that the user 
creates a monotone polygon, if not, we are fine with 
wrong result ☺)


