
www.sciencedirect.com

www.sable.mcgill.ca

Orthogonal searching

www.cs.wustl.edu

Problem definition

- Lets consider a finite set of points P. The goal is to find a structure enabling efficient search for points in a given range.
- E.g., in 2D rectangle:

Solution

- k-D trees

wp.soulwasted.net
- Range trees

graphics.stanford.edu

k-D trees

- Usage - GIS, computer graphics, databases
- By dividing the space we create a binary tree. Its inner nodes contain the dividing axis and two pointers, leaves contain the data
- Disadvantages
- Sensitive to the order of points entering the structure

k-D trees

- Initial requirement: any two points from P don't have the same x or y axis (this requirement can be later removed)
- We build the tree by alternating the division by x and y axis

k-D trees

- Line I_{1} intersects with p_{4}, which lies in the center of the set of points sorted according to x axis
- This divides the space to two half-planes, in each of them we divide according to y axis using the same criterion

k-D trees

- Lines I_{2}, I_{3} intersect points lying in the middle of "their" half-planes (according to y axis)
- We divide recursively until the half-planes contain more points or until we reach
a given number of iteration (depth of the tree)

k-D trees

k-D trees

Pseudocode

Algorithm BuildKdTree($(P$,depth)

1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even
4.
5.
6.
7.
8.
9.

then Split P with a vertical line ℓ through the median x-coordinate into P_{1} (left of or on ℓ) and P_{2} (right of ℓ)
else Split P with a horizontal line ℓ through the median y-coordinate into P_{1} (below or on ℓ) and P_{2} (above ℓ)
$v_{\text {left }} \leftarrow \operatorname{BuildKdTreE}\left(P_{1}\right.$, depth +1$)$
$v_{\text {right }} \leftarrow \operatorname{BuildKdTreE}\left(P_{2}\right.$, depth +1$)$
Create a node v storing ℓ, make $v_{\text {left }}$ the left child of v, and make $v_{\text {right }}$ the right child of v. return v

k-D trees

- Inserting to k-D tree:

```
public void insert(Vector <T> x)
{
    root = insert( x, root, 0);
}
// this code is specific for 2-D trees
private KdNode<T> insert(Vector <T> X, KdNode<T> t, int level)
{
if (t == null)
int compareResult = x.get(level).compareTo(t.data.get(level));
if (compareResult < 0)
    t.left = insert(x, t.left, 1 - level);
else if( compareResult > 0)
    t.right = insert(x, t.right, 1 - level);
else
    ; // do nothing if equal
    return t;
}
```


k-D trees

- Inserting node $(55,62)$

Region

k-D trees

- Searching for a given range:

```
/**
    * Print items satisfying
    * lowRange.get(0) <= x.get(0) <= highRange.get(0)
    * and
    * lowRange.get(1) <= x.get(1) <= highRange.get(1)
    */
public void printRange(Vector <T> lowRange,
                                    Vector <T>highRange)
{
    printRange(lowRange, highRange, root, 0);
}
```

```
private void
printRange(Vector <T> low,Vector <T> high,
                                KdNode<T> t, int level)
{
    if (t != null)
    {
        if ((low.get(0).compareTo(t.data.get(0)) <= 0 &&
                t.data.get(0).compareTo(high.get(0)) <=0)
            &&(low.get(1).compareTo(t.data.get(1)) <= 0 &&
                t.data.get(1).compareTo(high.get(1)) <= 0))
        System.out.println("(" + t.data.get(0) + "," +
                            t.data.get(1) + ")");
        if (low.get(level).compareTo(t.data.get(level)) <= 0)
                printRange(low, high, t.left, 1 - level);
        if (high.get(level).compareTo(t.data.get(level)) >= 0)
        printRange(low, high, t.right, 1 - level);
    }
}
```


Range search

k-D trees

- Complexity:
- Building k-D tree
- O($n \log n$)
- Memory complexity $O(n)$
- Search
- $O\left(n^{1-1 / d}+k\right)$, where d is dimension, k is the number of nodes in a given query range $\left[x, x^{\prime}\right] x\left[y, y^{\prime}\right]$

k-D trees

- Removing node from k-D tree
- Efficient solution doesn't exist, a node is marked as deleted
- Balancing k-D tree
- Any known strategy ensuring the balance of 2-D tree
- Can be reached by repeated balancing the tree

Assignment

- Implement k-D tree to the basic framework and visualize the dividing lines

Implementation

- KdNode:
- int k=2; // dimensionality
- int depth = 0; // current depth
- Point id = null; // point representation
- KdNode parent = null; // pointer to parent node
- KdNode lesser = null; // pointer to left child
- KdNode greater = null; // pointer to right child

Implementation

- Point
- double x;
- double y;
- Store the results, e.g., to:
- TreeSet<KdNode> results;
- The comparator of points should be implemented using the Euclidean distance

