

www.sciencedirect.com

www.sable.mcgill.ca

Orthogonal searching

www.cs.wustl.edu

Problem definition

- Lets consider a finite set of points *P*. The goal is to find a structure enabling efficient search for points in a given range.
- E.g., in 2D rectangle:

 $[x_1, x_1'], [x_2, x_2']$

Solution

• k-D trees

• Range trees

Data Rems of v

graphics.stanford.edu

- Usage GIS, computer graphics, databases
- By dividing the space we create a binary tree.
 Its inner nodes contain the dividing axis and two pointers, leaves contain the data
- Disadvantages
 - Sensitive to the order of points entering the structure

- Initial requirement: any two points from P don't have the same x or y axis (this requirement can be later removed)
- We build the tree by alternating the division by x and y axis

- Line I₁ intersects with p₄, which lies in the center of the set of points sorted according to x axis
- This divides the space to two half-planes, in each of them we divide according to y axis using the same criterion

- Lines I₂, I₃ intersect points lying in the middle of "their" half-planes (according to y axis)
- We divide recursively until the half-planes contain more points or until we reach a given number of iteration (depth of l_2 p_3 p_3 p_4 p_5 p_6
 - the tree)

Pseudocode

Algorithm BUILDKDTREE(*P*,*depth*)

- 1. **if** *P* contains only one point
- 2. then return a leaf storing this point
- 3. **else if** *depth* is even

5.

7.

- 4. **then** Split P with a vertical line ℓ through the median *x*-coordinate into P_1 (left of or on ℓ) and P_2 (right of ℓ)
 - else Split P with a horizontal line ℓ through the median y-coordinate into P_1 (below or on ℓ) and P_2 (above ℓ)
- 6. $v_{\text{left}} \leftarrow \text{BUILDKDTREE}(P_1, depth+1)$
 - $v_{\text{right}} \leftarrow \text{BUILDKDTREE}(P_2, depth+1)$
- 8. Create a node v storing ℓ , make v_{left} the left child of v, and make v_{right} the right child of v. 9. **return** v

```
• Inserting to k-D tree:
```

```
public void insert(Vector <T> x)
{
    root = insert( x, root, 0);
}
// this code is specific for 2-D trees
private KdNode<T> insert(Vector <T> x, KdNode<T> t, int level)
{
    if (t == null)
        t = new KdNode(x);
    int compareResult = x.get(level).compareTo(t.data.get(level));
    if (compareResult < 0)
        t.left = insert(x, t.left, 1 - level);
    else if( compareResult > 0)
        t.right = insert(x, t.right, 1 - level);
    else
        ; // do nothing if equal
    return t;
```

• Inserting node (55, 62)

• Searching for a given range:

```
/**
```

- * Print items satisfying
- * lowRange.get(0) <= x.get(0) <= highRange.get(0)</pre>
- * and
- * lowRange.get(1) <= x.get(1) <= highRange.get(1)
 */</pre>

```
{
    printRange(lowRange, highRange, root, 0);
}
```

```
private void
printRange(Vector <T> low, Vector <T> high,
                                       KdNode<T> t, int level)
{
   if (t != null)
   {
      if ((low.get(0).compareTo(t.data.get(0)) <= 0</pre>
                                                       & &
                t.data.get(0).compareTo(high.get(0)) <=0)</pre>
          && (low.get(1).compareTo(t.data.get(1)) <= 0 &&
                t.data.get(1).compareTo(high.get(1)) <= 0))</pre>
        System.out.println("(" + t.data.get(0) + "," +
                                        t.data.get(1) + ")");
      if (low.get(level).compareTo(t.data.get(level)) <= 0)</pre>
                printRange(low, high, t.left, 1 - level);
      if (high.get(level).compareTo(t.data.get(level)) >= 0)
                 printRange(low, high, t.right, 1 - level);
   }
```

}

Range search

- Complexity:
 - Building k-D tree
 - O(n log n)
 - Memory complexity O(n)
 - Search
 - O(n^{1-1/d} + k), where d is dimension, k is the number of nodes in a given query range [x,x'] x [y, y']

- Removing node from k-D tree
 - Efficient solution doesn't exist, a node is marked as deleted
- Balancing k-D tree
 - Any known strategy ensuring the balance of 2-D tree
 - Can be reached by repeated balancing the tree

Assignment

• Implement k-D tree to the basic framework and visualize the dividing lines

Implementation

- KdNode:
 - int k = 2; // dimensionality
 - int depth = 0; // current depth
 - Point id = null; // point representation
 - KdNode parent = null; // pointer to parent node
 - KdNode lesser = null; // pointer to left child
 - KdNode greater = null; // pointer to right child

Implementation

- Point
 - double x;
 - double y;
- Store the results, e.g., to:
 - TreeSet<KdNode> results;
- The comparator of points should be implemented using the Euclidean distance