
en.wikipedia.org
yagosweb.blogspot.com

Delaunay triangulation

Delaunay triangulation

- Triangulation aiming to preserve the triangles to be as equilateral as possible (in such a representation, each triangle represents the local value on the surface in the best way)
- It is unique
- Independent on the starting point or the orientation of the input dataset
- If 4 and more points are not lying on a circle

Delaunay triangulation

- Input: $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$
- Output: Triangulation T for P
- Definition of triangulation T for P represents the space division into the set of m triangles $T=\left\{t_{1}\right.$, $\left.t_{2}, \ldots, t_{m}\right\}$ which fulfill:
- Two arbitrary triangles can share maximally one edge
- The union of all triangles from T forms the convex hull of P
- None of the triangles contains another point from P

Active Edge List (AEL)

- Data structure often used for construction of DT
- Contains the topology of the DT triangles
- Lets consider two adjacent triangles t_{j}, t_{j} from DT, sharing one edge marked as $e_{i j}$ in t_{i} and as $e_{j i}$ in t_{j}
- Each edge $e_{i j}$ (Active Edge) in t_{i} triangle oriented counter-clockwise keeps:
- Pointer to the following edge e_{i+1} in t_{i}
- Pointer to edge $e_{j i}$ from the adjacent triangle t_{j}

Active Edge List (AEL)

- Except for edges lying on the convex hull H, each edge e from DT is represented twice (as $e_{i j}$ and $e_{j i}$), with different orientations
- These doubled edges are called twin edges
- Each triangle is then described by a triplet of edges $\left(e_{i j}, e_{i+1 j}, e_{i+2 j}\right)$ with counter-clockwise orientation and forming a Circular List
- The list of all such edges forms the Active Edge List

Active Edge List (AEL)

VD construction - algorithms

- Direct construction:
- Local switching
- Incremental approach
- Divide and conquer
- Indirect construction:
- Via Voronoi diagram

Local switching

- Modifying of a general triangulation to DT
- Based on switching the "illegal" edges in adjacent triangles forming a convex quad
- Complexity $O\left(n^{2}\right)$

Local switching

Algorithm: Delaunay Triangulation Local (P)

1. Create some triangulation $T(P)$
2. legal = false;
3. while $T(P)$!legal
4. legal = true;
5. Repeat for each e_{i} in $T(P)$
6.
7.
8.
9.

Take edge e_{i} and find its incident triangles t_{1} and t_{2} If the union of t_{1} and t_{2} is convex and illegal Legalize ($\mathrm{t}_{1}, \mathrm{t}_{2}$);
legal = false;

Edge legalization

- Edge flip = swapping the quad diagonals
- The resulted triangles are both legal = locally optimal according to the selected criterion

Ege Flip

Edge legalization

- Typical criteria:
- Minimization of the maximal angle
- Vertices lying inside a circumscribed circle of the triangle
- Minimal/maximal triangle height v
- Minimal/maximal area of triangle S
- ...

Incremental approach

- Can be used in 2D and 3D
- Incremental addition of points into already created DT
- For already existing Delaunay edge $e=p_{1} p_{2}$ we search for such a point p, which has the minimal Delaunay distance $d_{D}\left(p_{1} p_{2}, p\right)$ from $p_{1} p_{2}$
- Each Delaunay edge is oriented, the point p is searched only on the left side from this edge
- We use the test for orientation of the triangle vertices if it is counter-clockwise (determinant test)

Incremental approach

- We add edges of triangle $\left(p_{1}, p_{2}, p\right)$ to DT
- If such a point p does not exist (the examined edge lies on the convex hull), we change the edge orientation and repeat the search
- Complexity $O\left(n^{2}\right)$

Delaunay distance

- Let $k(S, r)$ be a circle and $/$ a line intersecting with k in points a, b and p point lying on k
- Delaunay distance of point p from edge a, b is marked as $d_{D}(h, p)$

$$
d_{D}(h, p)= \begin{cases}-r & \text { Points } S, p \text { are in the opposite halfplane wrt. / } \\ r & \text { Points } S, p \text { are in the same halfplane wrt. } /\end{cases}
$$

Incremental approach

- When constructing we can use the modified AEL structure:
- It contains edges e for whose we are searching for points p, it doesn't store the topology model

Incremental approach

Incremental approach

Incremental approach

Pseudocode

Algorithm: Delaunay Triangulation Incremental (S, AEL, DT)

1. $\mathrm{p}_{1}=$ random point from $P, \mathrm{p} 2=$ the closest point to p_{1}
2. create edge $e=p_{1} p_{2}$;
3. $p=d_{D}(e)$, point with the smallest Delaunay distance left from e
4. if $p=N U L L$, swap orientation $e=p_{1} p_{2}$ to $e=p_{2} p_{1}$ and go back to 3
5. $e_{2}=p_{2} p, e_{3}=p p_{1}$
6. add e, e_{2}, e_{3} to AEL
7. while AEL not empty do
8. $\quad e=p_{1} p_{2}$ first edge from AEL
9. swap orientation $e=p_{1} p_{2}$ to $e=p_{2} p_{1}$
10. point p with the smallest Delaunay distance $d_{D}(e)$ left from e
11. if $p!=$ NULL
12.
13.
14. Add e to DT
15. $\operatorname{pop}(e)$

Pseudocode

Algorithm for adding edge e to AEL checks if AEL already contains the pair e^{\prime} with opposite orientation.
If so, e is removed from AEL.
If not, e is added to AEL.
Edge e is in both cases added to DT.
The triangulation is stored triangle by triangle.

Algorithm: Add ($e=a b, A E L, D T)$

1. create edge $e^{\prime}=b a$
2. if (e^{\prime} is in AEL)
3. remove $a b$ from AEL
4. else
5. push $a b$ to AEL
6. push $a b$ to DT

Incremental insertion method

- Uses so-called simplex (bounding triangle)
- Frequent method for DT construction
- Complexity $O\left(n^{2}\right)$
- Principle:
- In each step we add one point to DT and perform the legalization of DT

Incremental insertion method

- Input: set $P=\left\{p_{0}, p_{1}, \ldots, p_{n}\right\}$ of points in a plane
- Select p_{0} as a point with the highest y-axis value (or also the x-axis)
- We add two other points p_{-1} (sufficiently low and far away to the right) and p_{-2} (sufficiently high and far away to the left) so that P lies inside the triangle $p_{0} p_{-1} p_{-2}$

Incremental insertion method

- We create the DT sets $\left\{p_{-2}, p_{-1}, p_{0}, p_{1}, \ldots, p_{n}\right\}$ and at the end we remove all edges containing points p_{-2} and p_{-1}
- DT for the set $\left\{p_{-2}, p_{-1}, p_{0}\right\}$ is the triangle $\left\{p_{-2}\right.$, $\left.p_{-1}, p_{0}\right\}$

Incremental insertion method

- We don't want to determine the exact position of p_{-2}, p_{-1}, so for determining the position of p_{j} wrt. the oriented line we use the following equivalence:

1. p_{j} lies on the left side from $p_{i} \mathrm{p}_{-1}$
2. p_{j} lies on the left side from $\mathrm{p}_{-2} \mathrm{p}_{\mathrm{i}}$
3. $p_{j}>p_{i}$ in a lexicographic order according to y-axis and then to x-axis

Algorithm DelaunayTriangulation (P)

Input. A set P of $n+1$ points in the plane.
Output. A Delaunay triangulation of P.

1. Let p_{0} be the lexicographically highest point of P, that is, the rightmost among the points with largest y-coordinate.
2. Let p_{-1} and p_{-2} be two points in \mathbb{R}^{2} sufficiently far away and such that P is contained in the triangle $p_{0} p_{-1} p_{-2}$.
3. Initialize \mathcal{T} as the triangulation consisting of the single triangle $p_{0} p_{-1} p_{-2}$.
4. Compute a random permutation $p_{1}, p_{2}, \ldots, p_{n}$ of $P \backslash\left\{p_{0}\right\}$.
5. for $r \leftarrow 1$ to n
6. do (* Insert p_{r} into $\left.\mathcal{T}: *\right)$
7. \quad Find a triangle $p_{i} p_{j} p_{k} \in \mathcal{T}$ containing p_{r}.
8. if p_{r} lies in the interior of the triangle $p_{i} p_{j} p_{k}$
9. then Add edges from p_{r} to the three vertices of $p_{i} p_{j} p_{k}$, thereby splitting $p_{i} p_{j} p_{k}$ into three triangles.
10.

LEGALIZEEDGE $\left(p_{r}, \overline{p_{i} p_{j}}, \mathcal{T}\right)$
LeGALIZEEDGE $\left(p_{r}, \overline{p_{j} p_{k}}, \mathcal{T}\right)$
LeGALIZEEdGE $\left(p_{r}, \overline{p_{k} p_{i}}, \mathcal{T}\right)$
else ($* p_{r}$ lies on an edge of $p_{i} p_{j} p_{k}$, say the edge $\overline{p_{i} p_{j}} *$)
Add edges from p_{r} to p_{k} and to the third vertex p_{l} of the other triangle that is incident to $\overline{p_{i} p_{j}}$, thereby splitting the two triangles incident to $\overline{p_{i} p_{j}}$ into four triangles.
15. LeGALIZEEDGE $\left(p_{r}, \overline{p_{i} p_{l}}, \mathcal{T}\right)$
16.
$\operatorname{LEGALIZEEDGE}\left(p_{r}, \overline{p_{l} p_{j}}, \mathcal{T}\right)$
LEGALIZEEdGE $\left(p_{r}, \overline{p_{j} p_{k}}, \mathcal{T}\right)$
LEGALIZEEDGE $\left(p_{r}, \overline{p_{k} p_{i}}, \mathcal{T}\right)$
18.
19. Discard p_{-1} and p_{-2} with all their incident edges from \mathcal{T}.
20. return \mathfrak{T}

LEGALIZEEDGE $\left(p_{r}, \overline{p_{i} p_{j}}, \mathcal{T}\right)$

1. ($*$ The point being inserted is p_{r}, and $\overline{p_{i} p_{j}}$ is the edge of \mathcal{T} that may need to be flipped. $\left.*\right)$
2. if $\overline{p_{i} p_{j}}$ is illegal
3. then Let $p_{i} p_{j} p_{k}$ be the triangle adjacent to $p_{r} p_{i} p_{j}$ along $\overline{p_{i} p_{j}}$.
4. $\quad\left(*\right.$ Flip $\left.\overline{p_{i} p_{j}}: *\right)$ Replace $\overline{p_{i} p_{j}}$ with $\overline{p_{r} p_{k}}$.
5. LEGALIZEEDGE $\left(p_{r}, \overline{p_{i} p_{k}}, \mathcal{T}\right)$
6. LEGALIZEEDGE $\left(p_{r}, \overline{p_{k} p_{j}}, \mathcal{T}\right)$

Step 7 - finding the triangle containing

 p- The most computationally demanding step (it is not efficient to search for p in all triangles)
- The most common methods:
- Walking method (heuristic method, $O\left(n^{2}\right)$)
- DAG tree (ternary tree construction, $O(n \log n)$)

Walking method

- By traversing the adjacent triangles we are gradually approaching the searched triangle t_{i}
- We are testing the mutual position of p and edge $e_{i j}$ in AEL.

$$
p \begin{cases}\text { on the left side from } e_{i, j} \text { in } t_{i}, & \text { we are testing } e_{i+1, j} \text { in } t_{i} \\ \text { on the right side from } e_{i, j} \text { in } t_{i}, & \text { we are testing } e_{j, i} \text { in } t_{j}\end{cases}
$$

- Point p lies on the left side from all edges of the searched triangle

Divide and conquer

- Input set of points is divided into smaller parts, each of them is triangulated separately
- Resulting triangulations are merged and legalized

Assignment

- Implement the Delaunay triangulation using the incremental approach

Useful details for implementation

- We have to be able to determine the circumscribed circle = circle containing three vertices
- We can do this in the following way:
- Create a class RealPoint(float x, float y)
- Its distance method calculates the distance between points p 1 and p 2 :

$$
-\operatorname{sqrt}\left(\left(p_{1} \cdot x-p_{2} \cdot x\right)^{2}+\left(p_{1} \cdot y-p_{2} \cdot y\right)^{2}\right)
$$

Useful details for implementation

- Class Circle is determined by its center (RealPoint c) and radius (float r)
- Testing if a point p lies inside a circle:
- Method inside
- if (c.distanceSq(p) < r^{2}) return true; where distanceSq $=\left(p_{1} \cdot x-p_{2} \cdot x\right)^{2}+\left(p_{1} \cdot y-p_{2} \cdot y\right)^{2}$

Useful details for implementation

- Calculating the circle with three points lying on it (RealPoint p_{1}, p_{2}, p_{3}):
- Method circumCircle (p_{1}, p_{2}, p_{3})

$$
\begin{aligned}
& c p=\text { crossproduct }\left(p_{1}, p_{2}, p_{3}\right) \text {; } \\
& \text { if (} c p<>0 \text {) \{ } \\
& p_{1} S q=p_{1} \cdot x^{2}+p_{1} \cdot y^{2} ; \\
& p_{2} S q=p_{2} \cdot x^{2}+p_{2} \cdot y^{2} ; \\
& p_{3} S q=p_{3} \cdot x^{2}+p_{3} \cdot y^{2} ; \\
& \text { num }=p_{1} S q^{*}\left(p_{2} \cdot y-p_{3} \cdot y\right)+p_{2} S q^{*}\left(p_{3} \cdot y-p_{1} \cdot y\right)+ \\
& \mathrm{p}_{3} \mathrm{Sq}{ }^{*}\left(\mathrm{p}_{1} \cdot \mathrm{y}-\mathrm{p}_{2} \cdot \mathrm{y}\right) \text {; } \\
& \mathrm{cx}=\text { num } /\left(2.0^{*} \mathrm{cp}\right) \text {; } \\
& \text { num }=p_{1} S q^{*}\left(p_{3} \cdot x-p_{2} \cdot x\right)+p_{2} S q^{*}\left(p_{1} \cdot x-p_{3} \cdot x\right)+ \\
& \mathrm{p}_{3} \mathrm{Sq}^{*}\left(\mathrm{p}_{2} \cdot \mathrm{x}-\mathrm{p}_{1} \cdot \mathrm{x}\right) \text {; } \\
& \text { cy = num / (2.0f * cp); c.set(cx, cy); } \\
& \text { c.set(cx, cy); } \\
& r=c . \text { distance }\left(p_{1}\right) \text {; }
\end{aligned}
$$

Useful details for implementation

- crossproduct $\left(p_{1}, p_{2}, p_{3}\right)>$

$$
\begin{aligned}
& u_{1}=p_{2} \cdot x()-p_{1} \cdot x() ; \\
& v_{1}=p_{2} \cdot y()-p_{1} \cdot y() ; \\
& u_{2}=p_{3} \cdot x()-p_{1} \cdot x() ; \\
& v_{2}=p_{3} \cdot y()-p_{1} \cdot y() ; \\
& \text { return } u_{1} * v_{2} \cdot v_{1} * u_{2} ;
\end{aligned}
$$

