

Delaunay triangulation

* Triangulation aiming to preserve the triangles
to be as equilateral as possible (in such a
representation, each triangle represents the
local value on the surface in the best way)

* |tis unique
— Independent on the starting point or the

orientation of the input dataset

— If 4 and more points are not lying on a circle

Delaunay triangulation

Input: P={p,, p,, ..., P}
Output: Triangulation T for P

Definition of triangulation T for P represents the
space division into the set of m triangles T = {t,
t, ..., t..} which fulfill:

— Two arbitrary triangles can share maximally one edge

— The union of all triangles from T forms the convex hull
of P

— None of the triangles contains another point from P

Active Edge List (AEL)

Data structure often used for construction of DT
Contains the topology of the DT triangles

Lets consider two adjacent triangles t, t;from DT,
sharing one edge marked as e;in t;and as e; in t;

Each edge e; (Active Edge) in t;triangle oriented
counter-clockwise keeps:

— Pointer to the following edge e,,, in t,
— Pointer to edge e; from the adjacent triangle t;

Active Edge List (AEL)

Except for edges lying on the convex hull H, each
edge e from DT is represented twice (as e;and
e;;), with different orientations

These doubled edges are called twin edges

Each triangle is then described by a triplet of
edges (e, €;,4, €;,,) With counter-clockwise
orientation and forming a Circular List

The list of all such edges forms the Active Edge
List

Active Edge List (AEL)

VD construction — algorithms

* Direct construction:
— Local switching
— Incremental approach
— Divide and conquer

* Indirect construction:
— Via Voronoi diagram

Local switching

* Modifying of a general triangulation to DT

e Based on switching the “illegal” edges in
adjacent triangles forming a convex quad

* Complexity O(n?)

Local switching

Algorithm: Delaunay Triangulation Local(P)

Create some triangulation T(P)
legal = false;
while T(P) !legal
legal = true;
Repeat for each ‘e; in T(P)
Take edge ejand find its incident triangles t; and t;
If the union of t; and t;is convex and illegal
Legalize (ty, t2);

O 00 NO LA WDNRE

legal = false;

Edge legalization

* Edge flip = swapping the quad diagonals

* The resulted triangles are both legal = locally
optimal according to the selected criterion

Edge legalization

* Typical criteria:
— Minimization of the maximal angle

— Vertices lying inside a circumscribed circle of the
triangle

— Minimal/maximal triangle height v
— Minimal/maximal area of triangle S

Incremental approach

Can be used in 2D and 3D

Incremental addition of points into already
created DT

For already existing Delaunay edge e = p,p, we
search for such a point p, which has the minimal

Delaunay distance d,(p,p,, p) from p,p,

Each Delaunay edge is oriented, the point p is
searched only on the left side from this edge

We use the test for orientation of the triangle
vertices if it is counter-clockwise (determinant

test)

Incremental approach

* We add edges of triangle (p,, p,, p) to DT

 |f such a point p does not exist (the examined
edge lies on the convex hull), we change the
edge orientation and repeat the search

* Complexity O(n?)

Delaunay distance

e Let k(S, r) be a circle and [a line intersecting
with k in points a, b and p point lying on k

* Delaunay distance of point p from edge a,b is
marked as d,(h, p)

—r Points S, p are in the opposite halfplane wrt. |
r Points S, p are in the same halfplane wrt. /

dp(h,p) = {

Incremental approach

 When constructing we can use the modified
AEL structure:

— |t contains edges e for whose we are searching for
points p, it doesn’t store the topology model

Incremental approach

l dm N
o a f
change of [
orientation * -) L @

Incremental approach

Incremental approach

Pseudocode

Algorithm: Delaunay Triangulation Incremental (S, AEL, DT)

1. pi1=random point from P, p2 = the closest point to p;

2. create edge e = pip3;

3. p=dp(e), point with the smallest Delaunay distance left from e

4. if p=NULL, swap orientation e = pip>toe = p>p: and go back to 3

5. e>x=pp, e3=pp;

6. adde, ey, e3to AEL

7. while AEL not empty do

8. e = pip2first edge from AEL

o. swap orientation e = pip,toe = pyp:

10. point p with the smallest Delaunay distance dp(e) left from e
11. if p 1= NULL

12. €2 = p2p, €3 = ppi:

13. add e;, esto AEL (if these or their flips are not in AEL or DT)
14. Add e to DT

15. pop (e)

Pseudocode

Algorithm for adding edge e to AEL checks if AEL already contains the pair e’ with opposite
orientation.

If so, e is removed from AEL.

If not, e is added to AEL.

Edge e is in both cases added to DT.

The triangulation is stored triangle by triangle.

Algorithm: Add (e = ab, AEL, DT)

create edge e’ = ba
if (e’ is in AEL)
remove ab from AEL
else
push ab to AEL
push ab to DT

O v kA wWwNPRE

Incremental insertion method

Uses so-called simplex (bounding triangle)
Frequent method for DT construction
Complexity O(n?)

Principle:

— In each step we add one point to DT and perform
the legalization of DT

Incremental insertion method

* Input:setP={p, p,, ..., p,} of points in a plane

* Select p, as a point with the highest y-axis
value (or also the x-axis)

* We add two other points p_; (sufficiently low
and far away to the right) and p_, (sufficiently
high and far away to the left) so that P lies
inside the triangle p,p_; p_,

P2 Po

right convex hull

left convex hull
P-1

Incremental insertion method

* We create the DT sets {p_,,p.;, Py P1, --» Pp}

and at the end we remove all edges containing
points p_, and p_,

* DT for the set {p_,,p_;, p, } is the triangle {p_,,
p-ll p()}

Incremental insertion method

e We don’t want to determine the exact

position of p_,, p_,, so for determining the
position of p; wrt. the oriented line we use the
following equivalence:

1. pjlies on the left side from pip-1
2. pjlies on the left side from p-;pi

3. p;>p;iin alexicographic order according to y-axis and then to x-axis

pP—2

o1

Algorithm DELAUNAY TRIANGULATION(P)
Inpui. A set P of n+ 1 points in the plane.
Ouiput. A Delaunay triangulation of P,

1.

2,

el S R

10.
11.
12.
13.
14.

15.
16.
17.
18.
19.
20.

Let py be the lexicographically highest point of P, that is, the rightmost among the points
with largest y-coordinate.
Let p_1 and p_» be two points in B? sufficiently far away and such that P is contained in
the triangle ppp_1p- 2.
Initialize T as the triangulation consisting of the single triangle ppp_1p_2.
Compute a random permutation py, pz,...,py of PY\ {po}.
forr«— l1ton
do (# Insert p, into T: #)
Find a triangle p;p;py € T containing p,.
il p, lies in the interior of the triangle p;p;py
then Add edges from p, to the three vertices of p;p;pg. thereby splitting p;p;py
into three triangles.
LEGALIZEEDGE(p,, p;p;,T)
LEGALIZEEDGE(p,, p;pi, T)
LEGALIZEEDGE(p,, pipi, T)
else (+ p, lies on an edge of p;p;py, say the edge p;p; *)
Add edges from p, to p; and to the third vertex p; of the other triangle that
is incident to p;p;, thereby splitting the two triangles incident to p;p; into
four triangles.
LEGALIZEEDGE(p,, pip;, T)
LEGALIZEEDGE(p,, p;p;,T)
LEGALIZEEDGE(p,, pjpy,T)
LEGALIZEEDGE(p,, Prpi, T)
Discard p_ and p_» with all their incident edges from 7.
return T

pr lies in the interior of a triangle

Pk

Pi
Pj

Pi

pr falls on an edge

Pi

Pj

Pk

LEGALIZEEDGE(p;, pipj,7)

1
2
3.
4.
5
6

(+ The point being inserted 1s p,, and p;p; is the edge of J that may need to be flipped. *)
if pipj is illegal
then Let p;p;py be the triangle adjacent to p,p;p; along p;p;.
(x Flip p;pj: *) Replace p;p; with p,py.
LEGALIZEEDGE(p,, Pipk, T)
LEGALIZEEDGE(p,, prpj, T)

Step 7 — finding the triangle containing
p

 The most computationally demanding step (it
is not efficient to search for p in all triangles)
* The most common methods:

— Walking method (heuristic method, O(n?))
— DAG tree (ternary tree construction, O(n log n))

Walking method

* By traversing the adjacent triangles we are
gradually approaching the searched triangle t,

 We are testing the mutual position of p and
edge e;; in AEL.

on the left side from &; ; inf;, we are testing €;;1 jin {;
p

on the right side from €; j in{;, we are testing €; ; in f

* Point p lies on the left side from all edges of
the searched triangle

Divide and conquer

nput set of points is divided into smaller
narts, each of them is triangulated separately

Resulting triangulations are merged and
egalized

Assignment

* Implement the Delaunay triangulation using
the incremental approach

Useful details for implementation

 We have to be able to determine the
circumscribed circle = circle containing three
vertices

* We can do this in the following way:

— Create a class RealPoint(float x, float y)

* |ts distance method calculates the distance between
points pl and p2:
— sqrt((pyx - p,.x)? + (p1.y - poy))

Useful details for implementation

* Class Circle is determined by its center
(RealPoint c) and radius (float r)

* Testing if a point p lies inside a circle:

— Method inside

* if (c.distanceSq(p) < r?) return true;
where distanceSq = (p,.x - p,.x)? + (p,.y - p,.y)?

Useful details for implementation

* Calculating the circle with three points lying on it

(RealPoint p,, p,, ps):
— Method circumCircle(p,, p,, ps)
cp = crossproduct (p;, Py, P3);
if (cp <>0) {
P:Sq = P1.X° + Pyy;
P,Sq = Py X° + Pyy?;
P3Sq = P3.X° + P3.y?;
num = p;5Sq *(p,.y - P3.y) + P,59 *(Pp3.y - P1y) +
P3Sa *(pyy - P,y);
cx=num /(2.0 * cp);
num = p,Sq *(p5.x - p,.X) + p,Sq*(p;-Xx - p3.X) +
P3SA™(py-X - P1.X);
cy = num / (2.0f * cp); c.set(cx, cy);
c.set(cx, cy);
r = c.distance(p,);

Useful details for implementation

* crossproduct (p,, p,, P3)>
u; = py.X() - p1-x();
vy = Poy() - pyyl);
u, = p3.X() - py-x();
vy = P3y() - pry();
return u; * v, - v, * u,;

