



www.grasshopper3d.com

www.sonycsl.co.jp

#### Voronoi diagrams





http://newtextiles.media.mit.edu/?p=1906

cs.nyu.edu

## Motivation

- Solves so-called post office problem
  - The goal is to plan a placement of new post office/supermarket/...
  - How many people will find the new supermarket attractive?
  - Lets consider the following simplified requirements:
    - The price of all goods is the same in all supermarkets
    - Total cost = cost for the goods + travelling cost to the supermarket
    - Travelling cost to the supermarket = Euclidean distance to the supermarket x fixed cost per distance unit
    - The goal of the customer is to minimize the costs
  - Consequence: the customers are using the service of the nearest supermarket

## Motivation

- This model induces the division of the space to subregions according to the location of the supermarkets – each subregion contains all points being closer to the given supermarket than to any other supermarket
- Such a space division is called Voronoi diagram

#### Euclidean distance

• Euclidean distance between two points  $P = [p_{x'}, p_{y}]$  and  $Q = [q_{x'}, q_{y}]$  is defined as

$$|PQ| = dist(P,Q) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$$

## VD definition

- Let P = {P<sub>1</sub>, ..., P<sub>n</sub>} be a set of n different points in space, called generating points.
- Voronoi diagram of P is the division to n cells connected with points P<sub>i</sub> in that way that an arbitrary point Q lies in the cell of P<sub>i</sub> only when

$$|QP_i| < |QP_j|$$
 for all  $P_j \in P, j \neq i$ 

# VD definition

- Lets denote the Voronoi diagram of *P* as
  Vor(*P*)
- A cell of Vor(P), belonging to point Pi, is denoted as γ(P<sub>i</sub>) and we call it a Voronoi cell of point P<sub>i</sub>





 If all points in P are colinear, Vor(P) consists of n – 1 parallel lines



 If the points are not colinear, Vor(P) is continuous and its edges are line segments or half-segments



Voronoi cell γ(P<sub>i</sub>) is unlimited only when the point P<sub>i</sub> belongs to an edge of the convex hull of P

If P contains 4 or more vertices lying on one circle, there is a Voronoi vertex formed by the intersection of Voronoi edges whose number corresponds to the number of points on that circle – we call it a degenerated Voronoi diagram



# Algorithms for VD construction

- Generally, creating VD for n points lies in O(n log n)
- Algorithms:

. . .

- Naïve approach
- Incremental algorithm
- Divide and conquer
- Sweep line (Fortune's algorithm)

### Naïve approach

- Each region y(P<sub>i</sub>) of Voronoi diagram is generated as an intersection between halfplanes h(P<sub>i</sub>, P<sub>j</sub>), for all j ≠ i.
- The complexity of finding one region = O(n log n)
- Total complexity = O(n<sup>2</sup> log n)

### Incremental algorithm

- 1. For all points *P*:
  - 1. In the current VD, we localize the corresponding Voronoi cell containing  $P_{i+1} \rightarrow \gamma(P_{i1})$
  - 2. We create the axis of line segment  $P_{i+1}P_{i1}$
  - 3. We determine the intersections of this axis of line segment  $P_{i+1}P_{i1}$  with the boundary of  $\gamma(P_{i1})$
  - 4. We select one of the intersections which determines the Voronoi cell with which our algorithm will continue in the next step  $\rightarrow \gamma(P_{i2})$

## Incremental algorithm

- 5. We create the axis of the line segment  $P_{i+1}P_{i2}$  and its intersections with the boundary of  $y(P_{i2})$ . We select an intersection not lying on the common edge of  $y(P_{i1})$  and  $y(P_{i2})$  and we continue
- 6. We repeat step 5, until we reach the second intersection of the axis of line intersection  $P_{i+1}P_{i1}$  with the boundary of  $\gamma(P_{i1})$
- 7. We remove the edges inside the newly created Voronoi cell



#### Incremental algorithm

• Complexity O(n<sup>2</sup>), in special cases even O(n)



http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/Voronoi /Incremental2/incremental2.htm

- The input set is recursively divide to two subsets until we reach the set of three points for which we construct the VD easily
- The crucial part is the "backtracking step", where the individual solutions have to be merged to one VD
- Complexity O(n log n)

 We sort the input points and divide them vertically to two subsets *R* and *B* of approximately the same size



• We calculate recursively Vor(R) and Vor(B)



• We determine so called **separating chain** 



We remove the part of Vor(R) lying on the right side from the separating chain and the par of Vor(B) lying on the left side from the separating chain



• Defining the separating chain:

- First, we find two convex hulls ...



... and the upper and lower tangent and their perpendicular half-lines





- We start from one of these half-lines and continue with the following procedure, until we reach the second half-line:
  - Always when there starts an edge  $e \in b(R, B)$  for which  $e \subset b_{ij}$ ,  $p_i \in R$ ,  $p_j \in B$ :
    - Search for the intersection of edge e with  $Vor_R(p_i)$
    - Search for the intersection of edge e with  $Vor_B(p_i)$
    - Select one of these intersections
    - Determine  $p_k$  corresponding to a new starting region
    - Replace  $p_i$  or  $p_j$  (according to the selected point) by new  $p_k$
    - Repeat this step with the new edge













































- Algorithm uses so-called "sweep line" and "beach line", both of them traversing the space containing the input points
- The sweep line can be horizontal or vertical, heading from top to bottom or vice versa
- Invariant of the algorithm = for the input points already traversed by the sweep line we have already a correct VD constructed, the rest of the points was not processed yet

- "Beach line" is not in fact a line but a curve above the sweep line, consisting of parts of parabolas
- A set of all points being closer to some of the points above the sweep line than to the sweep line itself is delineated by parabolic arcs – their connection forms the beach line



- The intersection of arcs lying on the beach line lie on the edges of the VD. With moving the sweep line, these intersections create the edges of VD Vor(P)
- The algorithms contains the following two operations:

- Site event a new generating point emerges on the beach line, we have to add it to the VD structure
- Circle event when one of the parabolic arcs is terminated

#### Site event

 This event generates a new parabolic arc on the beach line and its intersection with the current beach line starts to create a new VD edge





#### Site event

 Beach line consists of maximally 2n – 1 parabolic arcs, because each generating point creates one parabola and divides maximally one existing parabolic arc to two parts

#### Circle event

- When some of the parabolic arcs is terminated
- This happens when three parabolas generated by points P<sub>i</sub>, P<sub>j</sub>, P<sub>k</sub> all intersect in point Q – then this point Q forms the new Voronoi vertex

#### Circle event



- More information, details for implementation:
  - <u>http://blog.ivank.net/fortunes-algorithm-and-implementation.html</u>

# Weighted Voronoi diagrams

- One of possible generalizations of VD, when each generating point is assigned to a weight. This weight influences the size and shape of the VD cell.
- Lets assign weight w<sub>i</sub> ∈ R to point P<sub>i</sub>. Then we define the corresponding metrics as
  dist<sub>WVD</sub>(P, Q) = dist(P, Q) w<sub>i</sub>

where dist can be an arbitrary metrics

# Weighted Voronoi diagrams

- When increasing the weight of a given point the corresponding VD cell is increasing which correspond to the given metric
- When the dist metric is the Euclidean distance, then dist<sub>WVD</sub>(P, P<sub>i</sub>) can be interpreted as the distance of point P from a circle with center in P<sub>i</sub> and radius w<sub>i</sub>
- Voronoi edges are in this case parts of hyperbolas

#### Weighted Voronoi diagrams

Е



www.cgal.org

### Assignment

- Use the already constructed Delaunay triangulation for the construction of Voronoi diagram
- Visualize it

