
www.grasshopper3d.com

www.sonycsl.co.jp

Voronoi diagrams

cs.nyu.edu

http://newtextiles.media.mit.edu/?p=1906

Motivation

- Solves so-called post office problem
- The goal is to plan a placement of new post office/supermarket/...
- How many people will find the new supermarket attractive?
- Lets consider the following simplified requirements:
- The price of all goods is the same in all supermarkets
- Total cost = cost for the goods + travelling cost to the supermarket
- Travelling cost to the supermarket = Euclidean distance to the supermarket x fixed cost per distance unit
- The goal of the customer is to minimize the costs
- Consequence: the customers are using the service of the nearest supermarket

Motivation

- This model induces the division of the space to subregions according to the location of the supermarkets - each subregion contains all points being closer to the given supermarket than to any other supermarket
- Such a space division is called Voronoi diagram

Euclidean distance

- Euclidean distance between two points $P=$ $\left[p_{x}, p_{y}\right]$ and $Q=\left[q_{x}, q_{y}\right]$ is defined as

$$
|\mathrm{PQ}|=\operatorname{dist}(\mathrm{P}, \mathrm{Q})=\sqrt{ }\left(p_{x}-q_{x}\right)^{2}+\left(p_{y}-q_{y}\right)^{2}
$$

VD definition

- Let $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a set of n different points in space, called generating points.
- Voronoi diagram of P is the division to n cells connected with points P_{i} in that way that an arbitrary point Q lies in the cell of P_{i} only when

$$
\left|Q P_{i}\right|<\left|Q P_{j}\right| \text { for all } P_{j} \in P, j \neq i
$$

VD definition

- Lets denote the Voronoi diagram of P as $\operatorname{Vor}(P)$
- A cell of $\operatorname{Vor}(P)$, belonging to point $P i$, is denoted as $y\left(P_{i}\right)$ and we call it a Voronoi cell of point P_{i}

VD examples

VD properties

- If all points in P are colinear, $\operatorname{Vor}(P)$ consists of $n-1$ parallel lines

VD properties

- If the points are not colinear, $\operatorname{Vor}(P)$ is continuous and its edges are line segments or half-segments

VD properties

- Voronoi cell $y\left(P_{i}\right)$ is unlimited only when the point P_{i} belongs to an edge of the convex hull of P

VD properties

- If P contains 4 or more vertices lying on one circle, there is a Voronoi vertex formed by the intersection of Voronoi edges whose number corresponds to the number of points on that circle - we call it a degenerated Voronoi diagram

Algorithms for VD construction

- Generally, creating VD for n points lies in $O(n \log n)$
- Algorithms:
- Naïve approach
- Incremental algorithm
- Divide and conquer
- Sweep line (Fortune's algorithm)

Naïve approach

- Each region $y\left(P_{i}\right)$ of Voronoi diagram is generated as an intersection between halfplanes $h\left(P_{j}, P_{j}\right)$, for all $j \neq i$.
- The complexity of finding one region $=O(n$ log n)
- Total complexity $=O\left(n^{2} \log n\right)$

Incremental algorithm

1. For all points P :

1. In the current VD, we localize the corresponding Voronoi cell containing $P_{i+1} \rightarrow \mathrm{y}\left(P_{i 1}\right)$
2. We create the axis of line segment $P_{i+1} P_{i 1}$
3. We determine the intersections of this axis of line segment $P_{i+1} P_{i 1}$ with the boundary of $y\left(P_{i 1}\right)$
4. We select one of the intersections which determines the Voronoi cell with which our algorithm will continue in the next step $\rightarrow \mathrm{y}\left(P_{i 2}\right)$

Incremental algorithm

5. We create the axis of the line segment $P_{i+1} P_{i 2}$ and its intersections with the boundary of $y\left(P_{i 2}\right)$. We select an intersection not lying on the common edge of $y\left(P_{i 1}\right)$ and $y\left(P_{i 2}\right)$ and we continue
6. We repeat step 5, until we reach the second intersection of the axis of line intersection $P_{i+1} P_{i 1}$ with the boundary of $y\left(P_{i 1}\right)$
7. We remove the edges inside the newly created Voronoi cell

Incremental algorithm

- Complexity $O\left(n^{2}\right)$, in special cases even $O(n)$

http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/Voronoi /Incremental2/incremental2.htm

Divide and conquer

- The input set is recursively divide to two subsets until we reach the set of three points for which we construct the VD easily
- The crucial part is the „backtracking step", where the individual solutions have to be merged to one VD
- Complexity O($n \log n$)

Divide and conquer

- We sort the input points and divide them vertically to two subsets R and B of approximately the same size

Divide and conquer

- We calculate recursively $\operatorname{Vor}(R)$ and $\operatorname{Vor}(B)$

Divide and conquer

- We determine so called separating chain

Divide and conquer

- We remove the part of $\operatorname{Vor}(R)$ lying on the right side from the separating chain and the par of $\operatorname{Vor}(B)$ lying on the left side from the separating chain

Divide and conquer

- Defining the separating chain:
- First, we find two convex hulls ...

Divide and conquer

... and the upper and lower tangent and their perpendicular half-lines

Divide and conquer

- We start from one of these half-lines and continue with the following procedure, until we reach the second half-line:
- Always when there starts an edge $e \in b(R, B)$ for which $e \subset b_{i j} p_{i} \in R, p_{j} \in B$:
- Search for the intersection of edge e with $\operatorname{Vor}_{\mathrm{R}}\left(p_{i}\right)$
- Search for the intersection of edge e with $\operatorname{Vor}_{\mathrm{B}}\left(p_{j}\right)$
- Select one of these intersections
- Determine p_{k} corresponding to a new starting region
- Replace p_{i} or p_{j} (according to the selected point) by new p_{k}
- Repeat this step with the new edge

$\cdot \dot{\cdot} \cdot \vec{\cdot} \cdot$
\cdot
\cdot

Sweep line (Fortune's algorithm)

- Algorithm uses so-called „sweep line" and „beach line", both of them traversing the space containing the input points
- The sweep line can be horizontal or vertical, heading from top to bottom or vice versa
- Invariant of the algorithm = for the input points already traversed by the sweep line we have already a correct VD constructed, the rest of the points was not processed yet

Sweep line (Fortune's algorithm)

- „Beach line" is not in fact a line but a curve above the sweep line, consisting of parts of parabolas
- A set of all points being closer to some of the points above the sweep line than to the sweep line itself is delineated by parabolic arcs - their connection forms the beach line

Sweep line (Fortune's algorithm)

Sweep line (Fortune's algorithm)

- The intersection of arcs lying on the beach line lie on the edges of the VD. With moving the sweep line, these intersections create the edges of $\operatorname{VD} \operatorname{Vor}(P)$
- The algorithms contains the following two operations:

Sweep line (Fortune's algorithm)

- Site event - a new generating point emerges on the beach line, we have to add it to the VD structure
- Circle event - when one of the parabolic arcs is terminated

Site event

- This event generates a new parabolic arc on the beach line and its intersection with the current beach line starts to create a new VD edge

Site event

- Beach line consists of maximally $2 n-1$ parabolic arcs, because each generating point creates one parabola and divides maximally one existing parabolic arc to two parts

Circle event

- When some of the parabolic arcs is terminated
- This happens when three parabolas generated by points P_{j}, P_{j}, P_{k} all intersect in point Q then this point Q forms the new Voronoi vertex

Circle event

Sweep line (Fortune's algorithm)

- More information, details for implementation:
- http://blog.ivank.net/fortunes-algorithm-andimplementation.html

Weighted Voronoi diagrams

- One of possible generalizations of VD, when each generating point is assigned to a weight. This weight influences the size and shape of the VD cell.
- Lets assign weight $w_{i} \in R$ to point P_{i}. Then we define the corresponding metrics as

$$
\operatorname{dist}_{\mathrm{WvD}}(P, Q)=\operatorname{dist}(P, Q)-w_{i}
$$

where dist can be an arbitrary metrics

Weighted Voronoi diagrams

- When increasing the weight of a given point the corresponding VD cell is increasing which correspond to the given metric
- When the dist metric is the Euclidean distance, then $\operatorname{dist}_{\text {wvo }}\left(P, P_{i}\right)$ can be interpreted as the distance of point P from a circle with center in P_{i} and radius w_{i}
- Voronoi edges are in this case parts of hyperbolas

Weighted Voronoi diagrams

www.sciencedirect.com

Assignment

- Use the already constructed Delaunay triangulation for the construction of Voronoi diagram
- Visualize it

