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Motivation

• Solves so-called post office problem
– The goal is to plan a placement of new post 

office/supermarket/…
– How many people will find the new supermarket 

attractive?
– Lets consider the following simplified requirements:

• The price of all goods is the same in all supermarkets
• Total cost = cost for the goods + travelling cost to the 

supermarket
• Travelling cost to the supermarket = Euclidean distance to 

the supermarket x fixed cost per distance unit
• The goal of the customer is to minimize the costs

– Consequence: the customers are using the service of 
the nearest supermarket



Motivation

• This model induces the division of the space 
to subregions according to the location of the 
supermarkets – each subregion contains all 
points being closer to the given supermarket 
than to any other supermarket

• Such a space division is called Voronoi
diagram



Euclidean distance

• Euclidean distance between two points P = 
[px, py] and Q = [qx,qy] is defined as

|PQ| = dist(P,Q) = √(𝑝𝑥 − 𝑞𝑥)
2+(𝑝𝑦 − 𝑞𝑦)
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VD definition

• Let P = {P1, …, Pn} be a set of n different points 
in space, called generating points.

• Voronoi diagram of P is the division to n cells 
connected with points Pi in that way that an 
arbitrary point Q lies in the cell of Pi only when

|QPi| < |QPj|   for all Pj ∈ P, j ≠ i



VD definition

• Lets denote the Voronoi diagram of P as
Vor(P)

• A cell of Vor(P), belonging to point Pi, is 
denoted as ƴ(Pi) and we call it a Voronoi cell 
of point Pi



VD examples



VD properties

• If all points in P are colinear, Vor(P) consists of
n – 1 parallel lines



VD properties

• If the points are not colinear, Vor(P) is 
continuous and its edges are line segments or 
half-segments



VD properties

• Voronoi cell ƴ(Pi) is unlimited only when the 
point Pi belongs to an edge of the convex hull 
of P



VD properties

• If P contains 4 or more vertices lying on one 
circle, there is a Voronoi vertex formed by the 
intersection of Voronoi edges whose number 
corresponds to the number of points on that 
circle – we call it a degenerated Voronoi 
diagram



Algorithms for VD construction

• Generally, creating VD for n points lies in
O(n log n)

• Algorithms:

– Naïve approach

– Incremental algorithm

– Divide and conquer

– Sweep line (Fortune’s algorithm)

…



Naïve approach

• Each region ƴ(Pi) of Voronoi diagram is 
generated as an intersection between 
halfplanes h(Pi, Pj), for all j ≠ i.

• The complexity of finding one region = O(n log 
n)

• Total complexity = O(n2 log n)



Incremental algorithm

1. For all points P:

1. In the current VD, we localize the corresponding 
Voronoi cell containing Pi+1 → ƴ(Pi1)

2. We create the axis of line segment Pi+1Pi1

3. We determine the intersections of this axis of 
line segment Pi+1Pi1 with the boundary of ƴ(Pi1)

4. We select one of the intersections which 
determines the Voronoi cell with which our 
algorithm will continue in the next step → ƴ(Pi2)



Incremental algorithm

5. We create the axis of the line segment Pi+1Pi2 and
its intersections with the boundary of ƴ(Pi2). We 
select an intersection not lying on the common 
edge of ƴ(Pi1) and ƴ(Pi2) and we continue

6. We repeat step 5, until we reach the second 
intersection of the axis of line intersection Pi+1Pi1 

with the boundary of ƴ(Pi1)

7. We remove the edges inside                                 
the newly created Voronoi cell



Incremental algorithm

• Complexity O(n2), in special cases even O(n)

http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/Voronoi
/Incremental2/incremental2.htm



Divide and conquer

• The input set is recursively divide to two 
subsets until we reach the set of three points 
for which we construct the VD easily

• The crucial part is the „backtracking step“, 
where the individual solutions have to be 
merged to one VD

• Complexity O(n log n)



Divide and conquer

• We sort the input points and divide them 
vertically to two subsets R and B of 
approximately the same size



Divide and conquer

• We calculate recursively Vor(R) and Vor(B)



Divide and conquer

• We determine so called separating chain



Divide and conquer

• We remove the part of Vor(R) lying on the 
right side from the separating chain and the 
par of Vor(B) lying on the left side from the 
separating chain



Divide and conquer

• Defining the separating chain:

– First, we find two convex hulls …



Divide and conquer

… and the upper and lower tangent and their 
perpendicular half-lines



Divide and conquer

• We start from one of these half-lines and 
continue with the following procedure, until we 
reach the second half-line:

– Always when there starts an edge e ∈ b(R, B) for 
which e ⊂ bij, pi ∈ R, pj ∈ B:
• Search for the intersection of edge e with VorR(pi)

• Search for the intersection of edge e with VorB(pj)

• Select one of these intersections

• Determine pk corresponding to a new starting region

• Replace pi or pj (according to the selected point) by new pk

• Repeat this step with the new edge















































Sweep line (Fortune’s algorithm)

• Algorithm uses so-called „sweep line“ and
„beach line“, both of them traversing the 
space containing the input points

• The sweep line can be horizontal or vertical, 
heading from top to bottom or vice versa

• Invariant of the algorithm = for the input 
points already traversed by the sweep line we 
have already a correct VD constructed, the 
rest of the points was not processed yet



Sweep line (Fortune’s algorithm)

• „Beach line“ is not in fact a line but a curve 
above the sweep line, consisting of parts of 
parabolas

• A set of all points being closer to some of the 
points above the sweep line than to the 
sweep line itself is delineated by parabolic 
arcs – their connection forms the beach line 



Sweep line (Fortune’s algorithm)



Sweep line (Fortune’s algorithm)

• The intersection of arcs lying on the beach line
lie on the edges of the VD. With moving the 
sweep line, these intersections create the 
edges of VD Vor(P) 

• The algorithms contains the following two 
operations:



Sweep line (Fortune’s algorithm)

• Site event – a new generating point emerges 
on the beach line, we have to add it to the VD 
structure

• Circle event – when one of the parabolic arcs 
is terminated



Site event

• This event generates a new parabolic arc on the
beach line and its intersection with the current
beach line starts to create a new VD edge



Site event

• Beach line consists of maximally 2n – 1 
parabolic arcs, because each generating point 
creates one parabola and divides maximally 
one existing parabolic arc to two parts



Circle event

• When some of the parabolic arcs is 
terminated

• This happens when three parabolas generated 
by points Pi, Pj, Pk all intersect in point Q –
then this point Q forms the new Voronoi
vertex



Circle event



Sweep line (Fortune’s algorithm)

• More information, details for implementation:

– http://blog.ivank.net/fortunes-algorithm-and-
implementation.html

http://blog.ivank.net/fortunes-algorithm-and-implementation.html


Weighted Voronoi diagrams

• One of possible generalizations of VD, when 
each generating point is assigned to a weight. 
This weight influences the size and shape of 
the VD cell.

• Lets assign weight wi ∈ R to point Pi. Then we 
define the corresponding metrics as

distWVD(P, Q) = dist(P, Q) – wi

where dist can be an arbitrary metrics



Weighted Voronoi diagrams

• When increasing the weight of a given point 
the corresponding VD cell is increasing which 
correspond to the given metric

• When the dist metric is the Euclidean 
distance, then distWVD(P, Pi) can be interpreted 
as the distance of point P from a circle with 
center in Pi and radius wi

• Voronoi edges are in this case parts of 
hyperbolas



Weighted Voronoi diagrams

www.cgal.org

www.sciencedirect.com

d.hatena.ne.jp



Assignment

• Use the already constructed Delaunay
triangulation for the construction of Voronoi
diagram

• Visualize it

fr.wikipedia.org


