Defence in Depth

Petr Rockai

Overview

e Part 1: Layered Security

e Part2: Code Review & Open Design

e Part 3: Mitigation Techniques

¢ Part 4: Dropping and Separating Privileges
e Part5: Related Issues

Defence in Depth 2/44 November 20, 2018

Part 1: Layered Security

Defence in Depth 3/44 November 20, 2018

Goal: Secure Systems

no privilege or access violations
no leaks of private data

no unauthorised resource abuse
availability of service

Solution: Write Bulletproof Code

never works in practice
but see also sel 4

Defence in Depth 4/44

November 20, 2018

Alternative Solution

e write good, even if imperfect, code

¢ keep it simple

e use established components / libraries

e code reviews (both security and correctness)
e mitigation techniques (ASLR, Stack Guard, ...)
¢ least privilege & privilege separation

e minimise inter-component trust

Defence in Depth 5/44 November 20, 2018

Layered Security

e secure each component / layer separately
* many fences: make life hard for the attacker
* log all suspicious failures in your programs

Rules

e ifyou detect an attack early, you win
— before anything of value is stolen or compromised
— if the attacker gives up you also win
e ifyou win, it doesn’t matter how
— how many holes the attacker punched in your defence

Defence in Depth 6/44 November 20, 2018

Why Many Layers

each layer slows the attacker down

each layer has a chance to detect and report the attack
the attacker may fail to penetrate further at any point
obstacles — frustration — mistakes

more attacker mistakes = better chance that you win

Defence in Depth 7/44 November 20, 2018

Layering Example

e vyour run a C program & it was reviewed for security
¢ but a tricky buffer overflow slipped past

o the attacker discovers the overflow
¢ they attempt an exploit, but you use stack guard
» the program crashes, alerting the sysadmin

e the system goes into lockdown
e the buffer overflow is identified and fixed
e youwin

Defence in Depth 8/44 November 20, 2018

Single Points of Failure

certain SPOFs are unavoidable

prime example: the user

common failure modes can be mitigated

bad passwords x 2FA

social engineering x least privilege & strict protocols

bad mitigation: password policies

Defence in Depth 9/44 November 20, 2018

Part 2: Code Review & Open Design

Defence in Depth 10/44 November 20, 2018

Code Review

¢ the practice of reading and understanding code

¢ done by yourself, your team-mates, an external audit
e catches the most egregious security violations

¢ not a foolproof method

¢ the law of diminishing returns applies

Defence in Depth 11/44 November 20, 2018

Code Review: Open Source

with enough eyeballs, all bugs are shallow
sounds nice, but is not true
counterexamples: heartbleed, shellshock, ...
still very helpful

Defence in Depth 12/44 November 20, 2018

Security by Obscurity

the polar opposite of open source
keep the design secret

might use proprietary encryption
keep the source code secret
obfuscate binaries &c.

Does Not Work

Defence in Depth 13/44

November 20, 2018

Insecurity by Obscurity

o rarely, if ever, independently reviewed
o the only interested party is the attacker
¢ often riddled with basic flaws and inadequate crypto
e attackers are often good at reverse engineering

— disassemblers, debuggers and emulators

— decompilers and automated control flow analysis
¢ insider attacks are a thing

Defence in Depth 14/44 November 20, 2018

Insecurity by Obscurity: Famous Examples

¢ GSM encryption (A5/1)

— also an example of intentionally weakened crypto

— and a practical downgrade attack
e MS Wireless Keyboard (XOR the MAC, CVE-2010-1184)
e MIFARE Classic (reverse engineered & found vulnerable)
e car remotes (Keelog, VW, ...)
e ~ every copy protection / DRM scheme ever

Defence in Depth 15/44 November 20, 2018

Obscurity Benefits

obscurity could also work in your favour

think non-updateable software in tamper-proof boxes
hire expert programmers & reviewers

stick with established crypto

contract a few security labs for external review

Defence in Depth 16/44 November 20, 2018

Compromise: Open Design

¢ you may have reasons to avoid opening your source
e you can still document and open the design
 this allows beneficial independent review

Defence in Depth 17/44 November 20, 2018

Use Established Modules

e use standard, tested and widely deployed components
— especially for cryptography
e use standard protocols, formats &c.
¢ they had a lot more review than your code
e never implement your own cryptography
— implementation bugs are common
— especially side channels
— sources of randomness are a serious problem

Defence in Depth 18/44 November 20, 2018

Part 3: Mitigation Techniques

Defence in Depth 19/44 November 20, 2018

Mitigation

e assumption: bugs are inevitable

¢ idea: make them hard or impossible to exploit
¢ not a substitute for good code

e partof alayered security approach

Defence in Depth 20/44 November 20, 2018

Mitigation Approaches

make common bugs harder to exploit
isolate components from each other
principle of least privilege

keep each component simple

fail securely whenever possible

Defence in Depth 21/44 November 20, 2018

Exploit Mitigations

W~X - write XOR execute

address space layout randomisation
boot-time library randomised relinking
trap sleds (as opposed to nop sleds)
guard pages

malloc & mmap randomisation

secure randomness by default

Defence in Depth 22/44

November 20, 2018

Isolation: Motivation

e stop propagation of faults
e protect unrelated applications
+ make attacks harder to conduct

Defence in Depth 23/44 November 20, 2018

I[solation: Approaches

e separate processes

e separate user accounts

¢ lightweight containers (freebsd jails, linux 1xc)
¢ virtual machines

e physical separation

Defence in Depth 24/44 November 20, 2018

Sandboxing

e further restrict dangerous code

e SELinux, AppArmor (Linux)

¢ pledge (OpenBSD), capsicum (FreeBSD)

¢ Chromium content processes (also Edge, also Safari)
e ZeroVM

Defence in Depth 25/44 November 20, 2018

[solation Failures

¢ hyper-threading (SMT) side channels (CVE-2005-0109)
¢ rowhammer (CVE-2015-0565)

e MMU side channel attack (defeats ASLR, CVE-2017-5925)
[solation: Not Applicable

e how do you protect the database from wordpress?
¢ bookmarks, cookies or history from the browser?

Defence in Depth 26/44 November 20, 2018

Simplicity

complex code often has more bugs

simpler code means fewer bugs

applies to design as well

keep the code clean and readable

avoid clever hacks and dubious optimisation
resist adding unnecessary features

Defence in Depth 27/44 November 20, 2018

Minimise Trust

e trustis the opposite of isolation

¢ servers should not trust clients & vice versa

e never trust your inputs (see previous lectures)
¢ do not trust the network

e never run unsigned code

e faults propagate along trusted channels

Defence in Depth 28/44 November 20, 2018

Fail Safe vs Fail Secure

¢ behaviour during failure is often very important
« fail safe: do not endanger lives or property

« fail secure: ensure security is not broken

¢ notan either-or choice

¢ but not completely orthogonal either

Defence in Depth pLYY November 20, 2018

Compare:

if (check access() == EDENIED)

die();
with
if (check access() != OK)
die()

Whathappensifcheck access () returns ENOMEM?

Defence in Depth 30/44 November 20, 2018

Errors are Hard to Test

e error paths often contain vulnerabilities

« often inadequately tested

¢ use automated tools (fuzzing, static analysis)
Errors are Info Leaks

e stack traces, database details
o the padding oracle attack

Defence in Depth 31/44 November 20, 2018

Part 4: Dropping & Separating
Privileges

Defence in Depth 32/44 November 20, 2018

Principle of Least Privilege

e give only privilege required to get the job done
e applies to both programs and users

¢ does not prevent security holes

e this is again a mitigation technique

o Saltzer & Schroder 1975

Defence in Depth 33/44 November 20, 2018

Dropping Privileges

how to get rid of excessive privilege?

use dedicated, restricted user accounts
chroot jailing to restrict file system access
sandboxing (selinux, pledge, ...)

Defence in Depth 34/44 November 20, 2018

Privilege Drop: Common Example

e opening ports below 1024 requires root

¢ so does reading SSL private keys

¢ nothing much else in httpd does, though

e after startup, drop to an unprivileged user
e maybe also lock out filesystem with chroot

Defence in Depth 35/44

November 20, 2018

Trusted Computing Base

the entirety of code important for security
includes most application software

capable of violating user’s security constraints
should be as small as possible

usually very large in practice

sufficiently sandboxed code is not part of the TCB

Defence in Depth 36/44 November 20, 2018

Privilege Separation

multiple processes

separate responsibilities

simple & robust inter-process protocol

more powerful than the least privilege approach
capable of removing code from the TCB

Defence in Depth 37/44 November 20, 2018

OpenSSH

all network code runs in a separate process

¢ under a special user & chrooted

privileged process is well isolated

the latter decides everything security-relevant

Defence in Depth 38/44 November 20, 2018

Other Examples

* mail software: gmail, postfix
¢ OpenBSD relayd, httpd, bgpd, ntpd, ...
e chromium (see also sandboxing)

Defence in Depth 39/44 November 20, 2018

Part 5: Related Issues

Defence in Depth 40/44 November 20, 2018

Programming Languages

not all languages are equal from security POV
C is among the worst options

C++ is better if used correctly

Java is better yet (memory safe)

yet safer languages exist (Rust, Haskell, ...)

Defence in Depth 41/44 November 20, 2018

Keep Yourself Informed

what is the security record of the components you use?
learn from your mistakes

or even better, from mistakes of others

learn about the latest trends

read security blogs, papers, ...

Defence in Depth 42/44 November 20, 2018

Security Patterns

» like software design patterns (Gang of Four)
e commonly used designs and techniques
e recommended as good design by multiple sources

http://www.munawarhafiz.com/securitypatterncatalog/index.php

Defence in Depth 43/44 November 20, 2018

Summary

never assume your code is perfect
every defence could (and will) fail
always stack multiple approaches
be prepared for the worst case

Questions?

Defence in Depth 44/44

November 20, 2018

