
Lecture 1

SOFTWARE DEVELOPMENT

PB007 Software Engineering I
Faculty of Informatics, Masaryk University
Fall 2018

1© Barbora Bühnová

Outline

² Course organization
² Software development

² UML in software development
² UML Use Case diagram

2

Course Organization

Lecture 1/Part 1

3

About the lecturer: Barbora Bühnová

² Industrial experience
§ Association of Industrial Partners (SPP)

² Research
§ Lab of Software Architecture and Information Systems (LaSArIS), FI MU
§ CERIT Scientific Cloud, ICS MU

² Teaching
§ Courses on UML, software quality, architecture design, programming,

algorithm design, and others

² Collaboration with students
§ Bachelor/Master theses (Honeywell, Kiwi.com, IBM)
§ Seminar tutoring

4

About the course:
PB007 Software Engineering I

² Lectures
1. Software development, UML Use Case diagram.
2. Requirements specification, UML Activity diagram.
3. System analysis and design, structured vs. object-oriented A&D.
4. Object oriented analysis, UML Class, Object and State diagram.
5. Structured analysis, data modelling, ERD.
6. High-level design, UML Class diagram in design.
7. Low-level design and implementation, UML Interaction diagrams
8. Architecture design, UML Package, Component and Deployment diagram.
9. Testing, verification and validation.
10. Operation, maintenance and system evolution.
11. Software development management.
12. Advanced software engineering techniques.

5

About the course:
PB007 Software Engineering I

² Seminars
1. Visual Paradigm introduction, project assignment.
2. Project start, initial Use Case diagram.
3. Detailed Use Case diagram, textual specification of UC
4. Specification of use cases, Activity diagram.
5. Analytical Class diagram, Object diagram.
6. Analytical Class diagram, update of UC diagram, interaction of objects.
7. Data modelling, Entity Relationship diagram.
8. Design-level Class diagram, interfaces, implementation details.
9. State diagram.
10. Refinement of use cases with Interaction diagrams.
11. Finalization of Interaction diagrams, Class diagram update.
12. Packages, Component diagram, Deployment diagram.

6

About the course:
PB007 Software Engineering I

² Prerequisites
§ Basic knowledge of object oriented programming

² Lectures
§ 12 teaching weeks + 1 backup week

² Seminars
§ 12 teaching weeks + 1 final-consultation (or backup) week
§ Team project on UML modeling, teams of 3 students
§ Obligatory attendance (one absence ok) and weekly task delivery
§ Simple test at the beginning of each seminar (starting in Week 03)
§ Penalty for extra absence (-5 points) and late task delivery (-5 points)

² Evaluation
§ Seminar = project YES/NO, tests (20 points) and penalty recorded in IS notebook
§ Exam = test (35 points) + on-site modelling (35 points)
§ Grades: F<50, 50<=E<58, 58<=D<66, 66<=C<74, 74<=B<82, 82<=A

7

Literature

² Software Engineering, 9/E
§ Author: Ian Sommerville

§ Publisher: Addison-Wesley

§ Copyright: 2011

² UML 2 and the Unified Process, 2/E
§ Author: Jim Arlow and Ila Neustadt

§ Publisher: Addison-Wesley

§ Copyright: 2005

8

Software Development

Lecture 1/Part 2

Chapter 2 Software Processes 9

Outline

² Software engineering
² Software process activities
² Software process models

Chapter 2 Software Processes 10

Software and system engineering

² The economies and human lives of ALL developed
nations are dependent on software.

² Software engineering is concerned with theories,
methods and tools for professional software
development.

² Software engineering is concerned with cost-effective
development of high-quality software systems.

² System engineering is concerned with all aspects of
computer-based systems development including
hardware, software and process engineering.

Chapter 1 Introduction

Software products

² Generic products
§ Stand-alone systems that are marketed and sold to any customer who

wishes to buy them.
§ Examples – PC software such as graphics programs, project

management tools, CAD software.

² Customized products
§ Software that is commissioned by a specific customer to meet their

own needs.
§ Examples – embedded control systems, traffic monitoring systems.

² Online services
§ Multi-device applications and online services.
§ Examples – Google services, social networks.

Chapter 1 Introduction 12

Application types

² Stand-alone desktop applications
² Interactive web-based applications
² Embedded control systems
² Batch processing systems
² Computer games
² Mobile apps
² Data collection and monitoring systems
² IoT systems

Chapter 1 Introduction 13

Software engineering fundamentals

² Some fundamental principles apply to all types of
software system, irrespective of the type

² The SW process = A structured set of activities required
to develop a software system.

² Many different software processes but all involve:
§ Requirements specification
§ Analysis and design
§ Implementation
§ Validation and verification
§ Evolution

² Is the analysis and design always involved?
Chapter 2 Software Processes 14

Development

Software process activities

² Requirements specification, where customers and
engineers define the software and the constraints on its
operation.

² Analysis and design, where the requirements are refined
into system design.

² Implementation, where the software is implemented.
² Validation and verification, where the software is

checked to ensure that it is what the customer requires.
² Evolution, where the software is modified to reflect

changing customer and market requirements.

15Chapter 2 Software Processes

Software process models

Chapter 2 Software Processes 16

Agile

Early SCRUM

Agile Manifesto

Spiral

UML in Software Development

Lecture 1/Part 3

17Chapter 5 System modeling

System modeling

² System modeling is the process of developing abstract
models of a system, with each model presenting a
different view or perspective of that system.

² System modeling has now come to mean representing a
system using some kind of graphical notation, which is
now almost always based on the Unified Modeling
Language (UML).

² System modelling helps the analyst to understand the
functionality of the system and models are used to
communicate with colleagues and customers.

Chapter 5 System modeling 18

System perspectives

² An external perspective, where you model system
boundary, the context and/or environment of the system.

² A structural perspective, where you model the
organization of a system or the structure of the data that
is processed by the system.

² An interaction perspective, where you model the
interactions between a system and its environment, or
between the components of a system.

² A behavioral perspective, where you model the
dynamic behavior of the system and how it responds to
events.

Chapter 5 System modeling 19

UML diagram types

² External perspective
§ Use case diagram

² Structural perspective
§ Class diagram, Object diagram, Component diagram, Package

diagram, Deployment diagram, Composite structure diagram

² Interaction perspective
§ Sequence diagram, Communication diagram, Interaction

overview diagram, Timing diagram

² Behavioral perspective
§ Activity diagram, State diagram

Chapter 5 System modeling 20

Popular UML diagrams

² Use case diagrams, which show the interactions
between a system and its environment.

² Class diagrams, which show the object classes in
the system and the associations between these classes.

² Sequence diagrams, which show interactions between
actors and the system and between system components.

² Activity diagrams, which show the activities involved in a process
or in data processing.

Chapter 5 System modeling 21

UML Use Case Diagram

Lecture 1/Part 4

22Chapter 4 Requirements engineering

Outline

² Use Case modelling
§ System boundary – subject
§ Use cases
§ Actors

² Textual Use Case specification
² Advanced Use Case modelling

§ Actor generalisation
§ Use case generalisation
§ «include»
§ «extend»

23Chapter 4 Requirements engineering

© Clear View Training 2010 v2.6 24

The purpose of Use Case modelling

² Software specification
§ The process of identifying and

establishing system
requirements

§ Often referred to as
requirements specification
or requirements engineering

§ But focusing on functional
requirements only

MedicalSystem

Functional and non-functional requirements

² Functional requirements
§ Statements of services the system provides, how the system

should react to particular inputs and how the system should
behave in particular situations.

§ E.g. A user shall be able to search the appointments lists for all
clinics.

² Non-functional requirements
§ Properties and constraints on the services offered by the

system such as timing, reliability and security constraints,
constraints on the development process, platform, standards, etc.

§ E.g. The system shall be available on Mon–Fri, 8 am – 5 pm,
with downtime not exceeding five seconds in any one day.

25Chapter 4 Requirements engineering

© Clear View Training 2010 v2.6 26

Use Case modelling process

² Use case modelling
proceeds as follows:
§ Find the system boundary
§ Find actors – who or what

uses the system
§ Find use cases – what

functions the system should
offer

§ Specify use cases – with
textual specification or UML
Activity Diagrams

MedicalSystem

© Clear View Training 2010 v2.6 27

The subject

² We create a Use Case model containing:
§ Subject – the edge of the system

• also known as the system boundary
§ Actors – who or what uses the system
§ Use Cases – things actors do with the

system; functions the system should
offer to its users

§ Relationships – between actors and
use cases

² Can there be a direct communication
relationship between actors?

SystemName

subject

© Clear View Training 2010 v2.6 28

What are actors?

² An actor is anything that interacts directly
with the system
§ Actors identify who or what

uses the system and so indicate
where the system boundary lies

² Actors are external
to the system

² An Actor specifies a role that some external entity
adopts when interacting with the system
§ Can one actor represent two physical persons?
§ Can one physical person match to two actors?
§ Can there be two actors with the same name in the model?

Customer

«actor»
Customer

© Clear View Training 2010 v2.6 29

Identifying Actors

² When identifying actors ask:
§ Who or what uses the system?
§ What roles do they play in the interaction?
§ Who installs the system?
§ Who starts and shuts down the system?
§ Who maintains the system?
§ What other systems use this system?
§ Who gets and provides information to the system?
§ Does anything happen at a fixed time?

² What if the actor is not a human? What can it be?

Time

© Clear View Training 2010 v2.6 30

What are use cases?

² A use case is something an actor needs the system to
do. It is a “case of use” of the system by a specific actor.

² Use cases are always started by an actor
§ The primary actor triggers the use case
§ Zero or more secondary actors interact with the use case in

some way
§ Does the UC diagram tell me which actor is primary/secondary?

² Use cases are always written from the point of view of
the actors.

PlaceOrder GetStatusOnOrder

© Clear View Training 2010 v2.6 31

Identifying use cases

² Start with the list of actors that interact with the system
² When identifying use cases ask:

§ What functions will a specific actor want from the system?
§ Does the system store and retrieve information? If so, which

actors trigger this behaviour?
§ What happens when the system changes state (e.g. system start

and stop)? Are any actors notified?
§ Are there any external events that affect the system? What

notifies the system about those events?
§ Does the system interact with any external system?
§ Does the system generate any reports?

© Clear View Training 2010 v2.6 32

The use case diagram

Mail Order System

PlaceOrder

SendCatalogue

CancelOrder

CheckOrderStatusCustomer

ShipProduct

ShippingCompany

Dispatcher

communication
relationship

actor

subject name

system boundary

Mail Order System use case diagram

use case

© Clear View Training 2010 v2.6 33

Textual use case specification

Use case: PaySalesTax

Primary actors:
Time

Preconditions:
1. It is the end of the business quarter.

Postconditions:
1. The Tax Authority receives the correct amount of Sales Tax.

Main flow:
The use case starts when it is the end of the business quarter.
The system determines the amount of Sales Tax owed to the Tax
Authority.
The system sends an electronic payment to the Tax Authority.

1.
2.

3.

use case name

the actors involved in the
use case

the system state before
the use case can begin

the actual steps of the use
case

the system state when the
use case has finished

Alternative flows:
None.

alternative flows

ID: 1use case identifier
Brief description:
Pay Sales Tax to the Tax Authority at the end of the business quarter.

brief description

implicit time actor

Secondary actors:
TaxAuthority

© Clear View Training 2010 v2.6 34

Naming use cases

² Use cases describe something that happens
² They are named using verbs or verb phrases
² Naming standard 1: use cases are named using

UpperCamelCase e.g. PaySalesTax

1 UML 2 does not specify any naming standards.
All naming standards here are based on industry best practice.

© Clear View Training 2010 v2.6 35

Pre and postconditions

² Preconditions and postconditions
are constraints.

² Preconditions constrain the state
of the system before the use case
can start

² Postconditions constrain the state
of the system after the use case
has executed

² What pre/postconditions does a
delete of a product have?

² What about if the deletion is not
successful?

Preconditions:
1. A valid user has logged on to the
system

Postconditions:
1. The order has been marked
confirmed and is saved by the system

Use case: PlaceOrder

© Clear View Training 2010 v2.6 36

Main flow

² The flow of events lists the steps in a use case
² It always begins by an actor doing something

§ A good way to start a flow of events is:
1) The use case starts when an <actor> <function>

² The flow of events should be a sequence of short steps that are:
§ Declarative
§ Numbered,
§ Time ordered

² The main flow is always the happy day scenario
§ Everything goes as expected, without errors, deviations and interrupts
§ Alternatives can be shown by branching or by listing under Alternative

flows (see later)

<number> The <something> <some action>

© Clear View Training 2010 v2.6 37

Branching within a flow: IF

² Use the keyword IF to

indicate alternatives

within the flow of events

§ There must be a

Boolean expression

immediately after IF

² Use indentation and

numbering to indicate

the conditional part of

the flow

² Use ELSE to indicate

what happens if the

condition is false

Use case: ManageBasket

Primary actors:

Customer

Preconditions:

1. The shopping basket contents are visible.

Postconditions:

None.

Main flow:

The use case starts when the Customer selects an item in the

basket.

IF the Customer selects "delete item"

IF the Customer types in a new quantity

1.

2.

3.

The system removes the item from the basket.2.1

The system updates the quantity of the item in the basket.3.1

ID: 2

Brief description:

The Customer changes the quantity of an item in the basket.

Alternative flows:

None.

Secondary actors:

None.

© Clear View Training 2010 v2.6 38

Repetition within a flow: FOR

² We can use the
keyword FOR to
indicate the start of a
repetition within the
flow of events

² The iteration
expression immediately
after the FOR
statement indicates the
number of repetitions of
the indented text
beneath the FOR
statement.

ID: 3

Actors:
Customer

Preconditions:
None.

Main flow:
1. The use case starts when the Customer selects "find product".
2. The system asks the Customer for search criteria.
3. The Customer enters the requested criteria.
4. The system searches for products that match the Customer's criteria.
5. FOR each product found

5.1. The system displays a thumbnail sketch of the product.
5.2. The system displays a summary of the product details.
5.3. The system displays the product price.

Postconditions:
None.

Alternative flows:
NoProductsFound

Use case: FindProduct

Brief description:
The system finds some products based on Customer search criteria and
displays them to the Customer.

© Clear View Training 2010 v2.6 39

Repetition within a flow: WHILE

² We can use the
keyword WHILE to
indicate that something
repeats while some
Boolean condition is
true

ID: 4

Primary actors:
Customer

Preconditions:
None.

Main flow:
1. The use case starts when the Customer selects "show company details".
2. The system displays a web page showing the company details.
3. WHILE the Customer is browsing the company details

3.1. The system plays some background music.
3.2. The system displays special offers in a banner ad.

Postconditions:
1. The system has displayed the company details.
2. The system has played some background music.
3. The systems has displayed special offers.

Alternative flows:
None.

Use case: ShowCompanyDetails

Brief description:
The system displays the company details to the Customer.

Secondary actors:
None

© Clear View Training 2010 v2.6 40

Branching: Alternative flows

² Alternative flows capture
errors, branches, and
interrupts

² They can often be
triggered at any time
during the main flow

² Alternative flows never
return to the main flow

main flow

alternative flows

Use case

Only document enough alternative flows to
clarify the requirements!

© Clear View Training 2010 v2.6 41

Referencing alternative flows

² List the names of the
alternative flows at the
end of the use case

² Find alternative flows
by examining each
step in the main flow
and looking for:

§ Alternatives

§ Exceptions

§ Interrupts

Alternative
flows

Main flow:

Use case: CreateNewCustomerAccount

Preconditions:
None.

Brief description:
The system creates a new account for the Customer.

Postconditions:
1. A new account has been created for the Customer.

Alternative flows:
InvalidEmailAddress
InvalidPassword
Cancel

The use case begins when the Customer selects "create
new customer account".
WHILE the Customer details are invalid

The system creates a new account for the Customer.

The system asks the Customer to enter his or her details
comprising email address, password and password
again for confirmation.
The system validates the Customer details.

1.

2.

3.

2.1.

2.2

ID: 5

Primary actors:
Customer

Secondary actors:
None.

© Clear View Training 2010 v2.6 42

Advanced Use Case modelling

² We have studied basic use case analysis, but there are
relationships that we have still to explore:
§ Actor generalisation
§ Use case generalisation
§ «include» – between use cases
§ «extend» – between use cases

© Clear View Training 2010 v2.6 43

Actor generalization – example

² The Customer and the
Sales Agent actors are
very similar

² They both interact with
List products, Order
products, Accept
payment

² They both can play the
purchaser role.

Sales system

ListProducts

OrderProducts

AcceptPayment

CalculateCommission

Customer

SalesAgent

© Clear View Training 2010 v2.6 44

Actor generalisation

² If two actors share the same
sub-role, which makes them
communicate with the same
set of use cases

² The descendent actors inherit
the roles and relationships
to use cases held by the
ancestor actor

² We can substitute a
descendent actor anywhere
the ancestor actor is expected.
This is the substitutability
principle

² Is it always a good idea to
generalize two actors sharing
some use cases?

Sales system

ListProducts

OrderProducts

AcceptPayment

CalculateCommission

Purchaser

SalesAgentCustomer

ancestor
or parent

descendents or children

generalisation

abstract actor

Use actor generalization when it simplifies
the model

© Clear View Training 2010 v2.6 45

Use case generalisation

² The ancestor use case
must be a more general
case of one or more
descendant use cases

² Child use cases are more
specific forms of their
parent

² They can inherit, add and
override features of their
parent

Sales system

FindProduct

FindBook FindCD

Customer

© Clear View Training 2010 v2.6 46

«include»

² When use cases share
common behaviour we
can factor this out into
a separate inclusion use
case and «include» it in
base use cases

² Base use cases are
not complete without
the included use
cases

² Inclusion use cases may
be complete use cases,
or they may just specify a
fragment of behaviour
for inclusion elsewhere

Personnel System

FindEmployeeDetails

ChangeEmployeeDetails

DeleteEmployeeDetails

Manager

ViewEmployeeDetails

«include»

«include»

«include»

base use case

inclusion
use caseinclude

relationship

BA
«include»

© Clear View Training 2010 v2.6 47

«include» example

Use case: ChangeEmployeeDetails

Primary actors:
Manager

Preconditions:
1. The Manager is logged on to the system.

Postconditions:
1. The employee details have been changed.

Main flow:
include(FindEmployeeDetails).
The system displays the employee details.
The Manager changes the employee
details.

1.
2.
3.

ID: 1

Brief description:
The Manager changes the employee details.

Alternative flows:
None.

Use case: FindEmployeeDetails

Primary actors:
Manager

Preconditions:
1. The Manager is logged on to the system.

Postconditions:
1. The system has found the employee details.

Main flow:
The Manager enters the employee's ID.
The system finds the employee details.

1.
2.

ID: 4

Brief description:
The Manager finds the employee details.

Alternative flows:
None.

Seconday actors:
None

Seconday actors:
None

© Clear View Training 2010 v2.6 48

«extend»

² The extension use case
inserts behaviour into the
base use case.

² The base use case provides
extension points, but does
not know about the
extensions.

² The base use case is
complete already without the
extensions.

² There may be multiple
extension points and multiple
extending use cases.

Library system

IssueFineBorrowBook

FindBook

Librarian

ReturnBook
«extend»

base use case

extend
relationship extension

use case

BA
«extend»

BA
«include»

© Clear View Training 2010 v2.6 49

<<extend>> example

² Extension points are not numbered,
as they are not part of the flow

Use case: ReturnBook

Secondary actors:
None.

Preconditions:
1. The Librarian is logged on to the system.

Postconditions:
1. The book has been returned.

Main flow:
The Librarian enters the borrower's ID number.
The system displays the borrower's details including the list of
borrowed books.
The Librarian finds the book to be returned in the list of books.

The Librarian returns the book.
…

1.
2.

3.

4.

ID: 9

Brief description:
The Librarian returns a borrowed book.

Alternative flows:
None.

ReturnBook

extension points
overdueBook

IssueFine

«extend»
(overdueBook)

extension point: overdueBook

extension
point

base use case

extension use case

extension
point name

Primary actors:
Librarian

© Clear View Training 2010 v2.6 50

Requirements tracing

There is a many-to-many relationship between
requirements and use cases:
§ One use case may cover many individual

functional requirements
§ One functional requirement may be realised by

many use cases
² Requirements Traceability Matrix can help us

to trace if all requirements are covered by our
use case model

R1

R2

R3

R4

R5

U1 U2 U3 U4

Use cases
R

equirem
ents

Requirements
Traceability

Matrix

© Clear View Training 2010 v2.6 51

Key points

² Use cases describe system behaviour from the point of
view of actors. They have highest value when:
§ The system is dominated by functional requirements
§ The system has many types of user to which it delivers different

functionality
§ The system has many interfaces

² We have discussed:
§ Actors, use cases and their textual specification
§ Actor and use case generalization
§ Advanced relationships between use cases (include, extend)

² Use advanced features only where they simplify the model!

