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Chapter 13:  Query Optimization 

 Introduction  

 Transformation of Relational Expressions 

 Catalog Information for Cost Estimation 

 Statistical Information for Cost Estimation 

 Cost-based optimization 

 Dynamic Programming for Choosing Evaluation 

Plans 

 Materialized views  
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Introduction 

 Alternative ways of evaluating a given query 

 Equivalent expressions 

 Different algorithms for each operation 
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Introduction (Cont.) 

 An evaluation plan defines exactly what algorithm is used for each 

operation, and how the execution of the operations is coordinated. 

 Find out how to view query execution plans on your favorite database 
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Introduction (Cont.) 

 Cost difference between evaluation plans for a query can be 
enormous 

 E.g. seconds vs. days in some cases 

 Steps in cost-based query optimization 

1. Generate logically equivalent expressions using equivalence 
rules 

2. Annotate resultant expressions to get alternative query plans 

3. Choose the cheapest plan based on estimated cost 

 Estimation of plan cost based on: 

 Statistical information about relations. Examples: 

 number of tuples, number of distinct values for an attribute 

 Statistics estimation for intermediate results 

 to compute cost of complex expressions 

 Cost formulae for algorithms, computed using statistics 
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Transformation of Relational Expressions 

 Two relational algebra expressions are said to be equivalent if 

the two expressions generate the same set of tuples on every 

legal database instance 

 Note: order of tuples is irrelevant 

 we don’t care if they generate different results on databases 

that violate integrity constraints 

 In SQL, inputs and outputs are multisets of tuples 

 Two expressions in the multiset version of the relational 

algebra are said to be equivalent if the two expressions 

generate the same multiset of tuples on every legal 

database instance.  

 An equivalence rule says that expressions of two forms are 

equivalent 

 Can replace expression of first form by second, or vice versa 
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Equivalence Rules 

1. Conjunctive selection operations can be deconstructed into a 

sequence of individual selections. 

 

2. Selection operations are commutative. 

 

 

3. Only the last in a sequence of projection operations is 

needed, the others can be omitted. 

 

 

4. Selections can be combined with Cartesian products and 

theta joins. 

a. (E1 X E2) =  E1      E2  

b. 1(E1     2 E2) =  E1     1 2 E2  
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Equivalence Rules (Cont.) 

5. Theta-join operations (and natural joins) are commutative. 

 E1        E2 = E2       E1 

6. (a) Natural join operations are associative: 

   (E1      E2)    E3 = E1      (E2     E3) 

 

(b) Theta joins are associative in the following manner: 

 

  (E1       1 E2)     2 3 E3 = E1        1 3 (E2     2 E3) 

      

     where 2 involves attributes from only E2 and E3. 
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Pictorial Depiction of Equivalence Rules 
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Equivalence Rules (Cont.) 

7. The selection operation distributes over the theta join operation 

under the following two conditions: 

(a)  When all the attributes in 0  involve only the attributes of one  

       of the expressions (E1) being joined. 

 

                0E1      E2) = (0(E1))     E2  

 

 (b) When  1 involves only the attributes of E1 and 2  involves   

      only the attributes of E2. 

                   1 E1     E2) =  (1(E1))     ( (E2)) 
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Equivalence Rules (Cont.) 

8. The projection operation distributes over the theta join operation 

as follows: 

 (a) if  involves only attributes from L1  L2: 

 

  

 (b) Consider a join E1       E2.  

  Let L1 and L2 be sets of attributes from E1 and E2, 

respectively.   

 Let L3 be attributes of E1 that are involved in join condition , 

but are not in L1  L2, and 

  let L4 be attributes of E2 that are involved in join condition , 

but are not in L1  L2. 
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Equivalence Rules (Cont.) 

9. The set operations union and intersection are commutative  

 E1  E2  = E2  E1  

 E1  E2  = E2  E1  

 (set difference is not commutative). 

10. Set union and intersection are associative. 

                  (E1  E2)  E3 = E1  (E2  E3) 

              (E1  E2)  E3 = E1  (E2  E3) 

11. The selection operation distributes over ,  and –.  

                   (E1  –  E2) =  (E1) –  (E2) 

                     and similarly for  and  in place of  – 

Also:            (E1  –  E2) = (E1) –  E2 

                          and similarly for  in place of  –, but not for  

12. The projection operation distributes over union 

                       L(E1  E2) = (L(E1))  (L(E2))  
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Transformation Example: Pushing Selections 

 Query:  Find the names of all instructors in the Music 

department, along with the titles of the courses that they teach 

 name, title(dept_name= “Music” 

 (instructor     (teaches          course_id, title (course)))) 

 Transformation using rule 7a. 

 

 name, title((dept_name= “Music”(instructor))      

               (teaches          course_id, title (course))) 

 Performing the selection as early as possible reduces the size 

of the relation to be joined.  
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Example with Multiple Transformations 

 Query: Find the names of all instructors in the Music department 

who have taught a course in 2009, along with the titles of the 

courses that they taught 

 name, title(dept_name= “Music”gear = 2009  

    (instructor     (teaches       course_id, title (course)))) 

 Transformation using join associatively (Rule 6a): 

 name, title(dept_name= “Music”gear = 2009  

    ((instructor     teaches)       course_id, title (course))) 

 Second form provides an opportunity to apply the “perform 

selections early” rule, resulting in the subexpression 

           dept_name = “Music” (instructor)      year = 2009 (teaches) 
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Multiple Transformations (Cont.) 
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Transformation Example: Pushing Projections 

 Consider: name, title(dept_name= “Music” (instructor)     teaches)  
                                                      course_id, title (course)))) 

 When we compute 

  (dept_name = “Music” (instructor     teaches) 

 

we obtain a relation whose schema is: 
(ID, name, dept_name, salary, course_id, sec_id, semester, 
year) 

 Push projections using equivalence rules 8a and 8b; eliminate 
unneeded attributes from intermediate results to get: 
      name, title(name, course_id ( 
                             dept_name= “Music” (instructor)     teaches))  
                        course_id, title (course)))) 

 Performing the projection as early as possible reduces the size 
of the relation to be joined.  
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Join Ordering Example 

 For all relations r1, r2, and r3, 

  (r1    r2)    r3  = r1    (r2    r3 ) 

 (Join Associativity) 

 If r2    r3  is quite large and r1    r2 is small, we choose 

 

  (r1    r2)    r3  

 so that we compute and store a smaller temporary relation. 
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Join Ordering Example (Cont.) 

 Consider the expression 

  name, title(dept_name= “Music” (instructor)     teaches)  

                                                      course_id, title (course)))) 

 Could compute   teaches      course_id, title (course) first, and 

join result with  

  dept_name= “Music” (instructor)  

but  the result of the first join is likely to be a large relation. 

 Only a small fraction of the university’s instructors are likely to 

be from the Music department 

  it is better to compute 

   dept_name= “Music” (instructor)     teaches  

        first.  
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Enumeration of Equivalent Expressions 

 Query optimizers use equivalence rules to systematically generate 

expressions equivalent to the given expression 

 Can generate all equivalent expressions as follows:  

  Repeat 

 apply all applicable equivalence  rules on every subexpression of 

every equivalent expression found so far 

 add newly generated expressions to the set of equivalent 

expressions  

Until no new equivalent expressions are generated above 

 The above approach is very expensive in space and time 

 Two approaches 

 Optimized plan generation based on transformation rules 

 Special case approach for queries with only selections, projections 

and joins 
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Implementing Transformation Based 

Optimization 

 Space requirements reduced by sharing common sub-expressions: 

 when E1 is generated from E2 by an equivalence rule, usually only the top 

level of the two are different, subtrees below are the same and can be 

shared using pointers 

 E.g. when applying join commutativity 

 

 

 

 

 

 

 

 Same sub-expression may get generated multiple times 

 Detect duplicate sub-expressions and share one copy 

 Time requirements are reduced by not generating all expressions 

 Dynamic programming 

 We will study only the special case of dynamic programming for join 

order optimization 

E1 E2 
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Cost Estimation 

 Cost of each operator computer as described in Chapter 12 

 Need statistics of input relations 

 E.g. number of tuples, sizes of tuples 

 Inputs can be results of sub-expressions 

 Need to estimate statistics of expression results 

 To do so, we require additional statistics 

 E.g. number of distinct values for an attribute 

 More on cost estimation later 
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Choice of Evaluation Plans 

 Must consider the interaction of evaluation techniques when choosing 

evaluation plans 

 choosing the cheapest algorithm for each operation independently 

may not yield best overall algorithm.  E.g. 

 merge-join may be costlier than hash-join, but may provide a 

sorted output which reduces the cost for an outer level 

aggregation. 

 nested-loop join may provide opportunity for pipelining 

 Practical query optimizers incorporate elements of the following two 

broad approaches: 

1. Search all the plans and choose the best plan in a  

cost-based fashion. 

2. Uses heuristics to choose a plan. 
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Cost-Based Optimization 

 Consider finding the best join-order for r1    r2      . . . rn. 

 There are (2(n – 1))!/(n – 1)! different join orders for above expression.  

With n = 7, the number is 665280, with n = 10, the number is greater 

than 176 billion! 

 No need to generate all the join orders.  Using dynamic programming, 

the least-cost join order for any subset of  

{r1, r2, . . . rn} is computed only once and stored for future use.  
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Dynamic Programming in Optimization 

 To find best join tree for a set of n relations: 

 To find best plan for a set S of n relations, consider all possible 

plans of the form:  S1     (S – S1) where S1 is any non-empty 

subset of S. 

 Recursively compute costs for joining subsets of S to find the cost 

of each plan.  Choose the cheapest of the 2n – 2 alternatives. 

 Base case for recursion:  single relation access plan 

 Apply all selections on Ri using best choice of indices on Ri 

 When plan for any subset is computed, store it and reuse it when it 

is required again, instead of recomputing it 

 Dynamic programming 
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Join Order Optimization Algorithm 

procedure findbestplan(S) 

if (bestplan[S].cost  ) 

 return bestplan[S] 

// else bestplan[S] has not been computed earlier, compute it now 

if (S contains only 1 relation) 

         set bestplan[S].plan and bestplan[S].cost based on the best way  

         of accessing S  /* Using selections on S and indices on S */ 

     else for each non-empty subset S1 of S such that S1  S 

 P1= findbestplan(S1) 

 P2= findbestplan(S - S1) 

 A = best algorithm for joining results of P1 and P2 

 cost = P1.cost + P2.cost + cost of A 

 if cost < bestplan[S].cost  

   bestplan[S].cost = cost 

  bestplan[S].plan = “execute P1.plan; execute P2.plan; 

         join results of P1 and P2 using A” 

return bestplan[S] 

* Some modifications to allow indexed nested loops joins on relations that have   

   selections (see book) 
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Left Deep Join Trees 

 In left-deep join trees, the right-hand-side input for each join is 

a relation, not the result of an intermediate join. 
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Cost of Optimization 

 With dynamic programming time complexity of optimization with bushy 
trees is O(3n).   

 With n = 10, this number is 59000 instead of 176 billion! 

 Space complexity is O(2n)  

 To find best left-deep join tree for a set of n relations: 

 Consider n alternatives with one relation as right-hand side input 
and the other relations as left-hand side input. 

 Modify optimization algorithm: 

 Replace “for each non-empty subset S1 of S such that S1  S” 

 By:   for each relation r in S 
               let S1 = S – r . 

 If only left-deep trees are considered, time complexity of finding best join 
order is O(n 2n) 

 Space complexity remains at O(2n)  

 Cost-based optimization is expensive, but worthwhile for queries on 
large datasets (typical queries have small n, generally < 10) 
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Cost Based Optimization with Equivalence Rules 

 Physical equivalence rules allow logical query plan to be converted 

to physical query plan specifying what algorithms are used for each 

operation. 

 Efficient optimizer based on equivalent rules depends on 

 A space efficient representation of expressions which avoids 

making multiple copies of subexpressions 

 Efficient techniques for detecting duplicate derivations of 

expressions 

 A form of dynamic programming based on memorization, which 

stores the best plan for a subexpression the first time it is 

optimized, and reuses in on repeated optimization calls on same 

subexpression 

 Cost-based pruning techniques that avoid generating all plans 

 Pioneered by the Volcano project and implemented in the SQL Server 

optimizer 
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Heuristic Optimization 

 Cost-based optimization is expensive, even with dynamic programming. 

 Systems may use heuristics to reduce the number of choices that must 

be made in a cost-based fashion. 

 Heuristic optimization transforms the query-tree by using a set of rules 

that typically (but not in all cases) improve execution performance: 

 Perform selection early (reduces the number of tuples) 

 Perform projection early (reduces the number of attributes) 

 Perform most restrictive selection and join operations (i.e. with 

smallest result size) before other similar operations. 

 Some systems use only heuristics, others combine heuristics with 

partial cost-based optimization. 
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Structure of Query Optimizers 

 Many optimizers considers only left-deep join orders. 

 Plus heuristics to push selections and projections down the query 

tree 

 Reduces optimization complexity and generates plans amenable to 

pipelined evaluation. 

 Heuristic optimization used in some versions of Oracle: 

 Repeatedly pick “best” relation to join next  

 Starting from each of n starting points.  Pick best among these 

 Intricacies of SQL complicate query optimization 

 E.g. nested subqueries 
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Structure of Query Optimizers (Cont.) 

 Some query optimizers integrate heuristic selection and the generation of 

alternative access plans. 

 Frequently used approach 

 heuristic rewriting of nested block structure and aggregation 

 followed by cost-based join-order optimization for each block 

 Some optimizers (e.g. SQL Server) apply transformations to entire query 

and do not depend on block structure 

 Optimization cost budget to stop optimization early (if cost of plan is 

less than cost of optimization) 

 Plan caching to reuse previously computed plan if query is resubmitted 

 Even with different constants in query   

 Even with the use of heuristics, cost-based query optimization imposes a 

substantial overhead. 

 But is worth it for expensive queries 

 Optimizers often use simple heuristics for very cheap queries, and 

perform exhaustive enumeration for more expensive queries  
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Statistical Information for Cost Estimation 

 nr:  number of tuples in a relation r. 

 br: number of blocks containing tuples of r. 

 lr: size of a tuple of r. 

 fr: blocking factor of r – i.e., the number of tuples of r that fit into one block. 

 V(A, r): number of distinct values that appear in r for attribute A; same as 

the size of A(r). 

 If tuples of r are stored together physically in a file, then:  
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Selection Size Estimation 

 A=v(r) 

 nr / V(A,r) : number of records that will satisfy the selection 

 Equality condition on a key attribute: size estimate = 1 

 AV(r) (case of A  V(r) is symmetric) 

 Let c denote  the estimated number of tuples satisfying the condition.  

 If min(A,r) and max(A,r) are available in catalog 

 c = 0 if v < min(A,r) 

 

 c = 

 

 In absence of statistical information c is assumed to be nr / 2. 
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Size Estimation of Complex Selections 

 The selectivity of a condition i is the probability that a tuple in the 

relation r satisfies i .  

  If si  is the number of satisfying tuples in r, the selectivity of  i is 

given by si /nr. 

 Conjunction:  1 2. . .  n (r).  Assuming indepdence, estimate of  

  

tuples in the result is: 
 

 Disjunction:1 2 . . .  n (r).   Estimated number of tuples: 

 

 

 

 Negation:  (r).  Estimated number of tuples: 

 nr – size((r)) 
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Join Operation:  Running Example 

Running example:  
 student      takes 

Catalog information for join examples: 

 nstudent = 5,000. 

 fstudent  = 50, which implies that  

 bstudent =5000/50 = 100. 

 ntakes = 10000. 

 ftakes   = 25, which implies that  

 btakes = 10000/25 = 400. 

 V(ID, takes) = 2500, which implies that on average, each student 
who has taken a course has taken 4 courses. 

 Attribute ID in takes is a foreign key referencing student. 

 V(ID, student) = 5000 (primary key!) 
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Estimation of the Size of Joins 

 The Cartesian product r  s contains nr .ns tuples; each tuple occupies 

sr + ss bytes. 

 If R  S = , then r     s is the same as r   s.  

 If R  S is a key for R, then a tuple of s will join with at most one tuple 

from r 

 therefore, the number of tuples in r     s is no greater than the 

number of tuples in s. 

 If R  S in S is a foreign key in S referencing R, then the number of 

tuples in r     s is exactly the same as the number of tuples in s. 

 The case for R  S being a foreign key referencing S is 

symmetric. 

 In the example query student     takes, ID in  takes is a foreign key 

referencing student 

  hence, the result has exactly ntakes tuples, which is 10000 
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Estimation of the Size of Joins (Cont.) 

 If R  S = {A} is not a key for R or S. 

If we assume that every tuple t in R produces tuples in R    S, the 

number of tuples in R     S is estimated to be: 

 

 

 

If the reverse is true, the estimate obtained will be: 

 

 

 

The lower of these two estimates is probably the more accurate one. 
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Estimation of the Size of Joins (Cont.) 

 Compute the size estimates for depositor     customer without using 

information about foreign keys: 

 V(ID, takes) = 2,500, and 

V(ID, student) = 5,000 

 The two estimates are 

 5,000 * 10,000/2,500 = 20,000 and  

 5,000 * 10,000/5,000 = 10,000 

 We choose the lower estimate, which in this case, is the same as 

our earlier computation using foreign keys. 
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Size Estimation for Other Operations 

 Projection:  estimated size of A(r)   =   V(A,r) 

 Aggregation : estimated size of AGF(r)   = V(A,r) 

 Set operations 

  For unions/intersections of selections on the same relation: 

rewrite and use size estimate for selections 

 E.g. 1 (r)  2 (r)  can be rewritten as 1  2 (r) 

 For operations on different relations: 

 estimated size of r  s  = size of r + size of s.    

 estimated size of r  s  = minimum size of r and size of s. 

 estimated size of r – s   = r. 

 All the three estimates may be quite inaccurate, but provide 

upper bounds on the sizes. 



©Silberschatz, Korth and Sudarshan 1.42 Database System Concepts - 6th Edition 

Size Estimation (Cont.) 

 Outer join:   

 Estimated size of r        s  = size of  r      s  + size of r 

 Case of right outer join is symmetric 

 Estimated size of r          s  = size of r      s + size of r + size of s 
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Estimation of Number of Distinct Values 

Selections:  (r)  

 If  forces A to take a specified value: V(A, (r)) = 1. 

 e.g., A = 3 

 If  forces A to take on one of a specified set of values:  

        V(A, (r)) = number of specified values. 

 (e.g., (A = 1  A = 3  A = 4 )),  

 If the selection condition  is of the form A op r 

 estimated V(A, (r)) = V(A.r) * s 

 where s is the selectivity of the selection. 

 In all the other cases: use approximate estimate of 

  min(V(A,r), n (r) ) 

 More accurate estimate can be got using probability theory, but 

this one works fine generally 
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 Nested Subqueries 

 Materialized Views 
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Optimizing Nested Subqueries** 

 Nested query example: 

select name 

from instructor 

where exists (select * 

                 from teaches 

                 where instructor.ID = teaches.ID and teaches.year = 2007) 

  SQL conceptually treats nested subqueries in the where clause as 

functions that take parameters and return a single value or set of values 

 Parameters are variables from outer level query that are used in the 

nested subquery; such variables are called correlation variables 

   Conceptually, nested subquery is executed once for each tuple in the 

cross-product generated by the outer level from clause 

 Such evaluation is called correlated evaluation  

 Note: other conditions in where clause may be used to compute a join 

(instead of a cross-product) before executing the nested subquery 
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Optimizing Nested Subqueries (Cont.) 

 Correlated evaluation may be quite inefficient since  

 a large number of calls may be made to the nested query  

 there may be unnecessary random I/O as a result 

 SQL optimizers attempt to transform nested subqueries to joins where 

possible, enabling use of efficient join techniques 

 E.g.: earlier nested query can be rewritten as  

select  name 

from   instructor, teaches 

where instructor.ID = teaches.ID and teaches.year = 2007 

 Note: the two queries generate different numbers of duplicates (why?) 

 teaches can have duplicate IDs 

 Can be modified to handle duplicates correctly as we will see 

 In general, it is not possible/straightforward to move the entire nested 

subquery from clause into the outer level query from clause 

 A temporary relation is created instead, and used in body of outer 

level query 
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Optimizing Nested Subqueries (Cont.) 

In general, SQL queries of the form below can be rewritten as shown 

 Rewrite:  select … 
                from L1 

                         where P1 and exists (select * 
                    from L2 
          where P2) 

 To:           create table t1 as 
                 select distinct V 
                 from L2 
                 where P2

1
 

 

             select … 
                 from L1, t1  
                 where P1 and P2

2 

 P2
1 contains predicates in P2 that do not involve any correlation 

variables 

 P2
2  reintroduces predicates involving correlation variables, with  

relations renamed appropriately 

 V contains all attributes used in predicates with correlation 
variables 
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Optimizing Nested Subqueries (Cont.) 

 In our example, the original nested query would be transformed to 
    create table t1 as  
         select distinct ID 
         from teaches 
         where year = 2007 
     
    select name 
    from instructor, t1 
     where t1.ID = instructor.ID 

 The process of replacing a nested query by a query with a join (possibly 
with a temporary relation) is called decorrelation. 

   Decorrelation is more complicated when 

  the nested subquery uses aggregation, or 

  when the result of the nested subquery is used to test for equality, or  

 when the condition linking the nested subquery to the other  
query is not exists,  

 and so on. 
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Materialized Views** 

 A materialized view is a view whose contents are computed and 

stored. 

 Consider the view 

create view department_total_salary(dept_name, total_salary) as 

select dept_name, sum(salary) 

from instructor 

group by dept_name 

 Materializing the above view would be very useful if the total salary by 

department is required frequently 

 Saves the effort of finding multiple tuples and adding up their 

amounts 
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Top-K Queries   

 Top-K queries 

    select *  

from r, s 

where r.B = s.B 

order by r.A ascending 

limit 10 

 Alternative 1: Indexed nested loops join with r as outer 

 Alternative 2: estimate highest r.A value in result and add 

selection (and r.A <= H) to where clause   

 If < 10 results, retry with larger H 
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Optimization of Updates 

 Halloween problem 

    update R set A = 5 * A  

where A > 10 

 If index on A is used to find tuples satisfying A > 10, and tuples 

updated immediately, same tuple may be found (and updated) 

multiple times 

 Solution 1: Always defer updates 

 collect the updates (old and new values of tuples) and update 

relation and indices in second pass 

 Drawback: extra overhead even if e.g. update is only on R.B, 

not on attributes in selection condition 

 Solution 2: Defer only if required 

 Perform immediate update if update does not affect attributes 

in where clause, and deferred updates otherwise. 
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Join Minimization 

 Join minimization 

    select r.A, r.B  

from r, s 

where r.B = s.B 

 Check if join with s is redundant, drop it  

 E.g. join condition is on foreign key from r to s, no selection on s 

 Other sufficient conditions possible 

 select r.A, s1.B  

 from r, s as s1, s as s2 

   where r.B=s1.B and r.B = s2.B and s1.A < 20 and s2.A < 10 

 join with s2 is redundant and can be dropped (along with 

selection on s2) 

 Lots of research in this area since 70s/80s! 
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