
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 13: Query Optimization

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and Sudarshan 1.2 Database System Concepts - 6th Edition

Chapter 13: Query Optimization

 Introduction

 Transformation of Relational Expressions

 Catalog Information for Cost Estimation

 Statistical Information for Cost Estimation

 Cost-based optimization

 Dynamic Programming for Choosing Evaluation

Plans

 Materialized views

©Silberschatz, Korth and Sudarshan 1.3 Database System Concepts - 6th Edition

Introduction

 Alternative ways of evaluating a given query

 Equivalent expressions

 Different algorithms for each operation

©Silberschatz, Korth and Sudarshan 1.4 Database System Concepts - 6th Edition

Introduction (Cont.)

 An evaluation plan defines exactly what algorithm is used for each

operation, and how the execution of the operations is coordinated.

 Find out how to view query execution plans on your favorite database

©Silberschatz, Korth and Sudarshan 1.5 Database System Concepts - 6th Edition

Introduction (Cont.)

 Cost difference between evaluation plans for a query can be
enormous

 E.g. seconds vs. days in some cases

 Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence
rules

2. Annotate resultant expressions to get alternative query plans

3. Choose the cheapest plan based on estimated cost

 Estimation of plan cost based on:

 Statistical information about relations. Examples:

 number of tuples, number of distinct values for an attribute

 Statistics estimation for intermediate results

 to compute cost of complex expressions

 Cost formulae for algorithms, computed using statistics

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Generating Equivalent Expressions

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and Sudarshan 1.7 Database System Concepts - 6th Edition

Transformation of Relational Expressions

 Two relational algebra expressions are said to be equivalent if

the two expressions generate the same set of tuples on every

legal database instance

 Note: order of tuples is irrelevant

 we don’t care if they generate different results on databases

that violate integrity constraints

 In SQL, inputs and outputs are multisets of tuples

 Two expressions in the multiset version of the relational

algebra are said to be equivalent if the two expressions

generate the same multiset of tuples on every legal

database instance.

 An equivalence rule says that expressions of two forms are

equivalent

 Can replace expression of first form by second, or vice versa

©Silberschatz, Korth and Sudarshan 1.8 Database System Concepts - 6th Edition

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a

sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is

needed, the others can be omitted.

4. Selections can be combined with Cartesian products and

theta joins.

a. (E1 X E2) = E1  E2

b. 1(E1 2 E2) = E1 1 2 E2

))(())((
1221

EE   

))(()(
2121

EE   

)())))((((
121

EE LLnLL  

©Silberschatz, Korth and Sudarshan 1.9 Database System Concepts - 6th Edition

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.

 E1  E2 = E2  E1

6. (a) Natural join operations are associative:

 (E1 E2) E3 = E1 (E2 E3)

(b) Theta joins are associative in the following manner:

 (E1 1 E2) 2 3 E3 = E1 1 3 (E2 2 E3)

 where 2 involves attributes from only E2 and E3.

©Silberschatz, Korth and Sudarshan 1.10 Database System Concepts - 6th Edition

Pictorial Depiction of Equivalence Rules

©Silberschatz, Korth and Sudarshan 1.11 Database System Concepts - 6th Edition

Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation

under the following two conditions:

(a) When all the attributes in 0 involve only the attributes of one

 of the expressions (E1) being joined.

 0E1  E2) = (0(E1))  E2

 (b) When  1 involves only the attributes of E1 and 2 involves

 only the attributes of E2.

 1 E1  E2) = (1(E1))  ( (E2))

©Silberschatz, Korth and Sudarshan 1.12 Database System Concepts - 6th Edition

Equivalence Rules (Cont.)

8. The projection operation distributes over the theta join operation

as follows:

 (a) if  involves only attributes from L1  L2:

 (b) Consider a join E1  E2.

 Let L1 and L2 be sets of attributes from E1 and E2,

respectively.

 Let L3 be attributes of E1 that are involved in join condition ,

but are not in L1  L2, and

 let L4 be attributes of E2 that are involved in join condition ,

but are not in L1  L2.

)) (()) (() (2 1 2 1 2 1 2 1
E E E E L L L L       

))) (()) ((() (2 1 2 1 4 2 3 1 2 1 2 1
E E E E L L L L L L L L    

    
 

©Silberschatz, Korth and Sudarshan 1.13 Database System Concepts - 6th Edition

Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative

 E1  E2 = E2  E1

 E1  E2 = E2  E1

 (set difference is not commutative).

10. Set union and intersection are associative.

 (E1  E2)  E3 = E1  (E2  E3)

 (E1  E2)  E3 = E1  (E2  E3)

11. The selection operation distributes over ,  and –.

  (E1 – E2) =  (E1) – (E2)

 and similarly for  and  in place of –

Also:  (E1 – E2) = (E1) – E2

 and similarly for  in place of –, but not for 

12. The projection operation distributes over union

 L(E1  E2) = (L(E1))  (L(E2))

©Silberschatz, Korth and Sudarshan 1.14 Database System Concepts - 6th Edition

Transformation Example: Pushing Selections

 Query: Find the names of all instructors in the Music

department, along with the titles of the courses that they teach

 name, title(dept_name= “Music”

 (instructor (teaches course_id, title (course))))

 Transformation using rule 7a.

 name, title((dept_name= “Music”(instructor))

 (teaches course_id, title (course)))

 Performing the selection as early as possible reduces the size

of the relation to be joined.

©Silberschatz, Korth and Sudarshan 1.15 Database System Concepts - 6th Edition

Example with Multiple Transformations

 Query: Find the names of all instructors in the Music department

who have taught a course in 2009, along with the titles of the

courses that they taught

 name, title(dept_name= “Music”gear = 2009

 (instructor (teaches course_id, title (course))))

 Transformation using join associatively (Rule 6a):

 name, title(dept_name= “Music”gear = 2009

 ((instructor teaches) course_id, title (course)))

 Second form provides an opportunity to apply the “perform

selections early” rule, resulting in the subexpression

 dept_name = “Music” (instructor)  year = 2009 (teaches)

©Silberschatz, Korth and Sudarshan 1.16 Database System Concepts - 6th Edition

Multiple Transformations (Cont.)

©Silberschatz, Korth and Sudarshan 1.17 Database System Concepts - 6th Edition

Transformation Example: Pushing Projections

 Consider: name, title(dept_name= “Music” (instructor) teaches)
 course_id, title (course))))

 When we compute

 (dept_name = “Music” (instructor teaches)

we obtain a relation whose schema is:
(ID, name, dept_name, salary, course_id, sec_id, semester,
year)

 Push projections using equivalence rules 8a and 8b; eliminate
unneeded attributes from intermediate results to get:
 name, title(name, course_id (
 dept_name= “Music” (instructor) teaches))
 course_id, title (course))))

 Performing the projection as early as possible reduces the size
of the relation to be joined.

©Silberschatz, Korth and Sudarshan 1.18 Database System Concepts - 6th Edition

Join Ordering Example

 For all relations r1, r2, and r3,

 (r1 r2) r3 = r1 (r2 r3)

 (Join Associativity)

 If r2 r3 is quite large and r1 r2 is small, we choose

 (r1 r2) r3

 so that we compute and store a smaller temporary relation.

©Silberschatz, Korth and Sudarshan 1.19 Database System Concepts - 6th Edition

Join Ordering Example (Cont.)

 Consider the expression

 name, title(dept_name= “Music” (instructor) teaches)

 course_id, title (course))))

 Could compute teaches course_id, title (course) first, and

join result with

 dept_name= “Music” (instructor)

but the result of the first join is likely to be a large relation.

 Only a small fraction of the university’s instructors are likely to

be from the Music department

 it is better to compute

 dept_name= “Music” (instructor) teaches

 first.

©Silberschatz, Korth and Sudarshan 1.20 Database System Concepts - 6th Edition

Enumeration of Equivalent Expressions

 Query optimizers use equivalence rules to systematically generate

expressions equivalent to the given expression

 Can generate all equivalent expressions as follows:

 Repeat

 apply all applicable equivalence rules on every subexpression of

every equivalent expression found so far

 add newly generated expressions to the set of equivalent

expressions

Until no new equivalent expressions are generated above

 The above approach is very expensive in space and time

 Two approaches

 Optimized plan generation based on transformation rules

 Special case approach for queries with only selections, projections

and joins

©Silberschatz, Korth and Sudarshan 1.21 Database System Concepts - 6th Edition

Implementing Transformation Based

Optimization

 Space requirements reduced by sharing common sub-expressions:

 when E1 is generated from E2 by an equivalence rule, usually only the top

level of the two are different, subtrees below are the same and can be

shared using pointers

 E.g. when applying join commutativity

 Same sub-expression may get generated multiple times

 Detect duplicate sub-expressions and share one copy

 Time requirements are reduced by not generating all expressions

 Dynamic programming

 We will study only the special case of dynamic programming for join

order optimization

E1 E2

©Silberschatz, Korth and Sudarshan 1.22 Database System Concepts - 6th Edition

Cost Estimation

 Cost of each operator computer as described in Chapter 12

 Need statistics of input relations

 E.g. number of tuples, sizes of tuples

 Inputs can be results of sub-expressions

 Need to estimate statistics of expression results

 To do so, we require additional statistics

 E.g. number of distinct values for an attribute

 More on cost estimation later

©Silberschatz, Korth and Sudarshan 1.23 Database System Concepts - 6th Edition

Choice of Evaluation Plans

 Must consider the interaction of evaluation techniques when choosing

evaluation plans

 choosing the cheapest algorithm for each operation independently

may not yield best overall algorithm. E.g.

 merge-join may be costlier than hash-join, but may provide a

sorted output which reduces the cost for an outer level

aggregation.

 nested-loop join may provide opportunity for pipelining

 Practical query optimizers incorporate elements of the following two

broad approaches:

1. Search all the plans and choose the best plan in a

cost-based fashion.

2. Uses heuristics to choose a plan.

©Silberschatz, Korth and Sudarshan 1.24 Database System Concepts - 6th Edition

Cost-Based Optimization

 Consider finding the best join-order for r1 r2 . . . rn.

 There are (2(n – 1))!/(n – 1)! different join orders for above expression.

With n = 7, the number is 665280, with n = 10, the number is greater

than 176 billion!

 No need to generate all the join orders. Using dynamic programming,

the least-cost join order for any subset of

{r1, r2, . . . rn} is computed only once and stored for future use.

©Silberschatz, Korth and Sudarshan 1.25 Database System Concepts - 6th Edition

Dynamic Programming in Optimization

 To find best join tree for a set of n relations:

 To find best plan for a set S of n relations, consider all possible

plans of the form: S1 (S – S1) where S1 is any non-empty

subset of S.

 Recursively compute costs for joining subsets of S to find the cost

of each plan. Choose the cheapest of the 2n – 2 alternatives.

 Base case for recursion: single relation access plan

 Apply all selections on Ri using best choice of indices on Ri

 When plan for any subset is computed, store it and reuse it when it

is required again, instead of recomputing it

 Dynamic programming

©Silberschatz, Korth and Sudarshan 1.26 Database System Concepts - 6th Edition

Join Order Optimization Algorithm

procedure findbestplan(S)

if (bestplan[S].cost  )

 return bestplan[S]

// else bestplan[S] has not been computed earlier, compute it now

if (S contains only 1 relation)

 set bestplan[S].plan and bestplan[S].cost based on the best way

 of accessing S /* Using selections on S and indices on S */

 else for each non-empty subset S1 of S such that S1  S

 P1= findbestplan(S1)

 P2= findbestplan(S - S1)

 A = best algorithm for joining results of P1 and P2

 cost = P1.cost + P2.cost + cost of A

 if cost < bestplan[S].cost

 bestplan[S].cost = cost

 bestplan[S].plan = “execute P1.plan; execute P2.plan;

 join results of P1 and P2 using A”

return bestplan[S]

* Some modifications to allow indexed nested loops joins on relations that have

 selections (see book)

©Silberschatz, Korth and Sudarshan 1.27 Database System Concepts - 6th Edition

Left Deep Join Trees

 In left-deep join trees, the right-hand-side input for each join is

a relation, not the result of an intermediate join.

©Silberschatz, Korth and Sudarshan 1.28 Database System Concepts - 6th Edition

Cost of Optimization

 With dynamic programming time complexity of optimization with bushy
trees is O(3n).

 With n = 10, this number is 59000 instead of 176 billion!

 Space complexity is O(2n)

 To find best left-deep join tree for a set of n relations:

 Consider n alternatives with one relation as right-hand side input
and the other relations as left-hand side input.

 Modify optimization algorithm:

 Replace “for each non-empty subset S1 of S such that S1  S”

 By: for each relation r in S
 let S1 = S – r .

 If only left-deep trees are considered, time complexity of finding best join
order is O(n 2n)

 Space complexity remains at O(2n)

 Cost-based optimization is expensive, but worthwhile for queries on
large datasets (typical queries have small n, generally < 10)

©Silberschatz, Korth and Sudarshan 1.29 Database System Concepts - 6th Edition

Cost Based Optimization with Equivalence Rules

 Physical equivalence rules allow logical query plan to be converted

to physical query plan specifying what algorithms are used for each

operation.

 Efficient optimizer based on equivalent rules depends on

 A space efficient representation of expressions which avoids

making multiple copies of subexpressions

 Efficient techniques for detecting duplicate derivations of

expressions

 A form of dynamic programming based on memorization, which

stores the best plan for a subexpression the first time it is

optimized, and reuses in on repeated optimization calls on same

subexpression

 Cost-based pruning techniques that avoid generating all plans

 Pioneered by the Volcano project and implemented in the SQL Server

optimizer

©Silberschatz, Korth and Sudarshan 1.30 Database System Concepts - 6th Edition

Heuristic Optimization

 Cost-based optimization is expensive, even with dynamic programming.

 Systems may use heuristics to reduce the number of choices that must

be made in a cost-based fashion.

 Heuristic optimization transforms the query-tree by using a set of rules

that typically (but not in all cases) improve execution performance:

 Perform selection early (reduces the number of tuples)

 Perform projection early (reduces the number of attributes)

 Perform most restrictive selection and join operations (i.e. with

smallest result size) before other similar operations.

 Some systems use only heuristics, others combine heuristics with

partial cost-based optimization.

©Silberschatz, Korth and Sudarshan 1.31 Database System Concepts - 6th Edition

Structure of Query Optimizers

 Many optimizers considers only left-deep join orders.

 Plus heuristics to push selections and projections down the query

tree

 Reduces optimization complexity and generates plans amenable to

pipelined evaluation.

 Heuristic optimization used in some versions of Oracle:

 Repeatedly pick “best” relation to join next

 Starting from each of n starting points. Pick best among these

 Intricacies of SQL complicate query optimization

 E.g. nested subqueries

©Silberschatz, Korth and Sudarshan 1.32 Database System Concepts - 6th Edition

Structure of Query Optimizers (Cont.)

 Some query optimizers integrate heuristic selection and the generation of

alternative access plans.

 Frequently used approach

 heuristic rewriting of nested block structure and aggregation

 followed by cost-based join-order optimization for each block

 Some optimizers (e.g. SQL Server) apply transformations to entire query

and do not depend on block structure

 Optimization cost budget to stop optimization early (if cost of plan is

less than cost of optimization)

 Plan caching to reuse previously computed plan if query is resubmitted

 Even with different constants in query

 Even with the use of heuristics, cost-based query optimization imposes a

substantial overhead.

 But is worth it for expensive queries

 Optimizers often use simple heuristics for very cheap queries, and

perform exhaustive enumeration for more expensive queries

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Statistics for Cost Estimation

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and Sudarshan 1.34 Database System Concepts - 6th Edition

Statistical Information for Cost Estimation

 nr: number of tuples in a relation r.

 br: number of blocks containing tuples of r.

 lr: size of a tuple of r.

 fr: blocking factor of r – i.e., the number of tuples of r that fit into one block.

 V(A, r): number of distinct values that appear in r for attribute A; same as

the size of A(r).

 If tuples of r are stored together physically in a file, then:


















rf
rn

rb

©Silberschatz, Korth and Sudarshan 1.35 Database System Concepts - 6th Edition

Selection Size Estimation

 A=v(r)

 nr / V(A,r) : number of records that will satisfy the selection

 Equality condition on a key attribute: size estimate = 1

 AV(r) (case of A  V(r) is symmetric)

 Let c denote the estimated number of tuples satisfying the condition.

 If min(A,r) and max(A,r) are available in catalog

 c = 0 if v < min(A,r)

 c =

 In absence of statistical information c is assumed to be nr / 2.

),min(),max(

),min(
.

rArA

rAv
nr





©Silberschatz, Korth and Sudarshan 1.36 Database System Concepts - 6th Edition

Size Estimation of Complex Selections

 The selectivity of a condition i is the probability that a tuple in the

relation r satisfies i .

 If si is the number of satisfying tuples in r, the selectivity of i is

given by si /nr.

 Conjunction: 1 2. . .  n (r). Assuming indepdence, estimate of

tuples in the result is:

 Disjunction:1 2 . . .  n (r). Estimated number of tuples:

 Negation: (r). Estimated number of tuples:

 nr – size((r))

n

r

n
r

n

sss
n




 . . . 21









)1(...)1()1(1 21

r

n

rr

r
n

s

n

s

n

s
n

©Silberschatz, Korth and Sudarshan 1.37 Database System Concepts - 6th Edition

Join Operation: Running Example

Running example:
 student takes

Catalog information for join examples:

 nstudent = 5,000.

 fstudent = 50, which implies that

 bstudent =5000/50 = 100.

 ntakes = 10000.

 ftakes = 25, which implies that

 btakes = 10000/25 = 400.

 V(ID, takes) = 2500, which implies that on average, each student
who has taken a course has taken 4 courses.

 Attribute ID in takes is a foreign key referencing student.

 V(ID, student) = 5000 (primary key!)

©Silberschatz, Korth and Sudarshan 1.38 Database System Concepts - 6th Edition

Estimation of the Size of Joins

 The Cartesian product r  s contains nr .ns tuples; each tuple occupies

sr + ss bytes.

 If R  S = , then r s is the same as r  s.

 If R  S is a key for R, then a tuple of s will join with at most one tuple

from r

 therefore, the number of tuples in r s is no greater than the

number of tuples in s.

 If R  S in S is a foreign key in S referencing R, then the number of

tuples in r s is exactly the same as the number of tuples in s.

 The case for R  S being a foreign key referencing S is

symmetric.

 In the example query student takes, ID in takes is a foreign key

referencing student

 hence, the result has exactly ntakes tuples, which is 10000

©Silberschatz, Korth and Sudarshan 1.39 Database System Concepts - 6th Edition

Estimation of the Size of Joins (Cont.)

 If R  S = {A} is not a key for R or S.

If we assume that every tuple t in R produces tuples in R S, the

number of tuples in R S is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more accurate one.

),(sAV

nn sr 

),(rAV

nn sr 

©Silberschatz, Korth and Sudarshan 1.40 Database System Concepts - 6th Edition

Estimation of the Size of Joins (Cont.)

 Compute the size estimates for depositor customer without using

information about foreign keys:

 V(ID, takes) = 2,500, and

V(ID, student) = 5,000

 The two estimates are

 5,000 * 10,000/2,500 = 20,000 and

 5,000 * 10,000/5,000 = 10,000

 We choose the lower estimate, which in this case, is the same as

our earlier computation using foreign keys.

©Silberschatz, Korth and Sudarshan 1.41 Database System Concepts - 6th Edition

Size Estimation for Other Operations

 Projection: estimated size of A(r) = V(A,r)

 Aggregation : estimated size of AGF(r) = V(A,r)

 Set operations

 For unions/intersections of selections on the same relation:

rewrite and use size estimate for selections

 E.g. 1 (r)  2 (r) can be rewritten as 1  2 (r)

 For operations on different relations:

 estimated size of r  s = size of r + size of s.

 estimated size of r  s = minimum size of r and size of s.

 estimated size of r – s = r.

 All the three estimates may be quite inaccurate, but provide

upper bounds on the sizes.

©Silberschatz, Korth and Sudarshan 1.42 Database System Concepts - 6th Edition

Size Estimation (Cont.)

 Outer join:

 Estimated size of r s = size of r s + size of r

 Case of right outer join is symmetric

 Estimated size of r s = size of r s + size of r + size of s

©Silberschatz, Korth and Sudarshan 1.43 Database System Concepts - 6th Edition

Estimation of Number of Distinct Values

Selections:  (r)

 If  forces A to take a specified value: V(A, (r)) = 1.

 e.g., A = 3

 If  forces A to take on one of a specified set of values:

 V(A, (r)) = number of specified values.

 (e.g., (A = 1  A = 3  A = 4)),

 If the selection condition  is of the form A op r

 estimated V(A, (r)) = V(A.r) * s

 where s is the selectivity of the selection.

 In all the other cases: use approximate estimate of

 min(V(A,r), n (r))

 More accurate estimate can be got using probability theory, but

this one works fine generally

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Additional Optimization Techniques

 Nested Subqueries

 Materialized Views

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and Sudarshan 1.45 Database System Concepts - 6th Edition

Optimizing Nested Subqueries**

 Nested query example:

select name

from instructor

where exists (select *

 from teaches

 where instructor.ID = teaches.ID and teaches.year = 2007)

 SQL conceptually treats nested subqueries in the where clause as

functions that take parameters and return a single value or set of values

 Parameters are variables from outer level query that are used in the

nested subquery; such variables are called correlation variables

 Conceptually, nested subquery is executed once for each tuple in the

cross-product generated by the outer level from clause

 Such evaluation is called correlated evaluation

 Note: other conditions in where clause may be used to compute a join

(instead of a cross-product) before executing the nested subquery

©Silberschatz, Korth and Sudarshan 1.46 Database System Concepts - 6th Edition

Optimizing Nested Subqueries (Cont.)

 Correlated evaluation may be quite inefficient since

 a large number of calls may be made to the nested query

 there may be unnecessary random I/O as a result

 SQL optimizers attempt to transform nested subqueries to joins where

possible, enabling use of efficient join techniques

 E.g.: earlier nested query can be rewritten as

select name

from instructor, teaches

where instructor.ID = teaches.ID and teaches.year = 2007

 Note: the two queries generate different numbers of duplicates (why?)

 teaches can have duplicate IDs

 Can be modified to handle duplicates correctly as we will see

 In general, it is not possible/straightforward to move the entire nested

subquery from clause into the outer level query from clause

 A temporary relation is created instead, and used in body of outer

level query

©Silberschatz, Korth and Sudarshan 1.47 Database System Concepts - 6th Edition

Optimizing Nested Subqueries (Cont.)

In general, SQL queries of the form below can be rewritten as shown

 Rewrite: select …
 from L1

 where P1 and exists (select *
 from L2
 where P2)

 To: create table t1 as
 select distinct V
 from L2
 where P2

1

 select …
 from L1, t1
 where P1 and P2

2

 P2
1 contains predicates in P2 that do not involve any correlation

variables

 P2
2 reintroduces predicates involving correlation variables, with

relations renamed appropriately

 V contains all attributes used in predicates with correlation
variables

©Silberschatz, Korth and Sudarshan 1.48 Database System Concepts - 6th Edition

Optimizing Nested Subqueries (Cont.)

 In our example, the original nested query would be transformed to
 create table t1 as
 select distinct ID
 from teaches
 where year = 2007

 select name
 from instructor, t1
 where t1.ID = instructor.ID

 The process of replacing a nested query by a query with a join (possibly
with a temporary relation) is called decorrelation.

 Decorrelation is more complicated when

 the nested subquery uses aggregation, or

 when the result of the nested subquery is used to test for equality, or

 when the condition linking the nested subquery to the other
query is not exists,

 and so on.

©Silberschatz, Korth and Sudarshan 1.49 Database System Concepts - 6th Edition

Materialized Views**

 A materialized view is a view whose contents are computed and

stored.

 Consider the view

create view department_total_salary(dept_name, total_salary) as

select dept_name, sum(salary)

from instructor

group by dept_name

 Materializing the above view would be very useful if the total salary by

department is required frequently

 Saves the effort of finding multiple tuples and adding up their

amounts

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Additional Optimization Techniques

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and Sudarshan 1.51 Database System Concepts - 6th Edition

Top-K Queries

 Top-K queries

 select *

from r, s

where r.B = s.B

order by r.A ascending

limit 10

 Alternative 1: Indexed nested loops join with r as outer

 Alternative 2: estimate highest r.A value in result and add

selection (and r.A <= H) to where clause

 If < 10 results, retry with larger H

©Silberschatz, Korth and Sudarshan 1.52 Database System Concepts - 6th Edition

Optimization of Updates

 Halloween problem

 update R set A = 5 * A

where A > 10

 If index on A is used to find tuples satisfying A > 10, and tuples

updated immediately, same tuple may be found (and updated)

multiple times

 Solution 1: Always defer updates

 collect the updates (old and new values of tuples) and update

relation and indices in second pass

 Drawback: extra overhead even if e.g. update is only on R.B,

not on attributes in selection condition

 Solution 2: Defer only if required

 Perform immediate update if update does not affect attributes

in where clause, and deferred updates otherwise.

©Silberschatz, Korth and Sudarshan 1.53 Database System Concepts - 6th Edition

Join Minimization

 Join minimization

 select r.A, r.B

from r, s

where r.B = s.B

 Check if join with s is redundant, drop it

 E.g. join condition is on foreign key from r to s, no selection on s

 Other sufficient conditions possible

 select r.A, s1.B

 from r, s as s1, s as s2

 where r.B=s1.B and r.B = s2.B and s1.A < 20 and s2.A < 10

 join with s2 is redundant and can be dropped (along with

selection on s2)

 Lots of research in this area since 70s/80s!

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

