Interactive Tools and Techniques in Virtual Environment

Source & credits: Prof.S.Feiner, Columbia U., N.Y. Dr. L.Deligiannidis, U. of Georgia, GA

J.Sochor et al.

Metaphor WIMP - Windows, Icons, Menus, Pointers (would not exist without CG !)

- WIMP supposes that a human interacts with a computer. However,
- human wants to interact with a real world.

But ... real and digital worlds are separated.

Q: Are we limited by traditional interfaces in a way of using computers ?

Interaction in 3D space

4

Basic terms and definitions

3D interaction

Human-Computer Interaction in which the user's tasks are performed directly in a 3D spatial context

3D user interface (3D UI)

A UI that involves 3D interaction

Technological areas for 3D UIs

virtual environment (VE)

A synthetic, spatial (usually 3D) world seen from a firstperson point of view. The view in a VE is under the realtime control of the user. 6

virtual reality (VR)

Synonymous with VE, but it is associated with unrealistic hype generated by the media.

Technological areas for 3D UIs

augmented reality (AR)

A real-world environment that is enhanced (augmented) with synthetic objects or information.

mixed reality (MR)

A continuum including both VEs and AR. Distinguishes the level of "virtuality" (from "purely virtual" to "purely physical"

ubiquitous computing

The notion that the computing devices and infrastructure may be mobile or scattered throughout the real environment.

3D interaction - application areas

Design and prototyping "new architecture in real-world context" **Psychiatric treatment** "exposure therapy" Scientific visualization "insight and navigation through the data" Heritage/tourism "living history" **Collaborative work** "medicine, ... "

3D technologies

3D realistic rendering

- shape, global light & shadows, stereo & holograms

9

3D positioning

- 3DOF, 6DOF tracking

3D image/shape acquisition

- cameras, scanners, etc.

3D/6D force feedback eyes, head, voice, hands, feet, gestures, ...

PV182: Human Computer Interaction, 02.12.2018

3D Interaction Techniques

Interaction techniques for universal tasks

Interaction techniques for complex or composite tasks

3D interaction techniques using 2D devices

3D UI widgets

Higher level approaches for 3D UI design

Hybrid interaction techniques

combination of existing techniques

Two-handed interaction

- using both hands in a complementary way

Multimodal interaction

 using many different input and output "modalities" (gestures plus voice input, ...)

3D interaction aids

hand held tablet, doll, wheel, transparent interfaces,...

Black Magic Wand

3D UI design strategies

real-world metaphors helping to guide the user

applying principles of aesthetics and visual design

basing UI design on **formal taxonomies** and guidelines

"magic" to go **beyond the limitation**s of the real world

intentionally violating assumptions about the real world in the virtual world

PV182: Human Computer Interaction, 02.12.2018

From the moment we are born we learn to manipulate things around us using our hands and by adulthood we get to the point where we do not need any conscious attention to perform extremely complex manipulation.

The areas of the human brain that allow us to control hands are highly developed, occupying a major portion of the human motor cortex.

Hand manipulation is the major method of interaction in virtual worlds.

While voice, gaze and movement of other body parts are also used, direct hand manipulation remains **the most natural and efficient input** method for humans in 3D user interfaces.

Design of 3D manipulation techniques is difficult !

3D Manipulation Task

Canonical 3D manipulation tasks are

select, position and rotate

Variables that affect manipulation

 distance to object, object size, required translation distance, amount of rotation, objects density, and others

Design of manipulation techniques depends on interaction tasks and variables

Selection and manipulation

Basic 3D tasks

task	parameters
selection	distance and direction to the goal, density of objects close to the goal, number of selected objects, occlusion of goal
positioning	distance and direction to the initial position, distance and direction to the final position, precision of placement
rotation	distance to the goal, initial and final orientation, amount of rotation, precision of rotation

Classification of selection techniques (task decomposition)

Indication of object

- occlusion
- object touching
- pointing
- indirect selection

Confirmation of selection

- event
- gesture
- voice command
- no explicit command

Feedback

- text/symbolic
- aural
- visual
- force/tactile

Classification of manipulation techniques by metaphor

Exocentric metaphors

- World-in-miniature
- Automatic scaling

Egocentric metaphors Virtual hand metaphors

- classical virtual hand
- Go-Go
- Indirect Go-Go*Virtual pointer metaphors*
- Ray casting
- Aperture
- Flashlight
- Image plane

Avatar and exocentric view

First trials ...

MHT Mexico Lub

Put That There November 2, 1979

The Architecture Machine © 1979 MIT

Interact. Techniques - Virtual hand and pointer

The virtual hand and virtual pointer (ray-casting, laser ray) are the most basic techniques for 3D manipulation in VEs.

The **virtual hand technique** is a direct mapping of the user hand motion into the affected motions in a virtual environment, typically linearly scaled to establish the correspondence between the device and environment coordinate systems.

- The user is provided with a virtual "hand" a 3D cursor, often shaped like a human hand, whose movements correspond to the movements of the tracker worn on the hand or held in the user's fingers.
- To select an object, the user simply intersects the virtual hand with the target, and presses a trigger (or issues a voice command or a hand gesture) to pick it up.

Ray casting

one-hand pointing

two-hand pointing

Ray casting - video

Ray Casting Hardware: 1 WiiMote

PV182: Human Computer Interaction, 02.12.2018

The virtual hand technique is rather intuitive; one problem is that only those objects that are within the area of reach can be picked up, and this significantly limits the technique's applicability.

The motivation behind the *ray-casting* technique was to allow the user to select and manipulate objects beyond the area of normal reach.

The user points at objects with a virtual ray emanating from a virtual hand and then objects intersecting with the virtual ray can be selected, attached, and manipulated.

Interact. Techniques - Virtual hand and pointer

Object manipulation can be efficiently accomplished only in radial movements around the user (perpendicular to the ray direction) and rotations only around the ray axis.

Full 6DOF manipulation with ray-casting is impossible.

Natural constraints limit the user manipulations degrees of freedom.

Interaction Techniques

Advantages

"*Simple" virtual Hand* The most natural

Ray-casting

Objects can be selected at any distance (in theory) Natural, requires little effort

Disadvantages

"Simple" virtual Hand Limited area of manipulation

Ray-casting

Ineffective for selection of small and far away objects Ineffective for object positioning and rotation

Interaction Techniques

Improvements in ray-casting: Spotlight and Aperture techniques

The *spotlight* or *flashlight* technique (Liang, et al. 1994) uses a conic selection volume

easily select small objects no matter how far they are

requires techniques for further disambiguation of the target objects

Spotlight with Aperture technique

Interaction Techniques

Advantages Spotlight

Easier selection of small objects at any distance

Aperture (Forsberg, (1996)

Interactive and intuitive object disambiguation Selection is 2D

Disadvantages Spotlight (Liang, 1994)

Several objects fall into spotlight Inefficient positioning/rotation

Aperture Inefficient positioning/rotation

Fishing reel

method of controlling distances via a *fishing reel*.

- after selecting an object, the user can reel it back and forth
- fishing reel lets the user control the distance, but it separates the manipulation's degrees of freedom
- ray direction is controlled by the 6DOF movements of the user's hand, while distance is controlled by a separate controller
- requires an extra input device for the control of the ray length.

The Image Plane techniques

The techniques allow the user to select and manipulate objects by interacting with their 2D projections on an image plane in front of the user: the user selects objects by simply touching their projection on an image plane.

Sticky finger (Pierce, et al. 1997)

The Image Plane techniques

3rd person's view

user's view

The Image Plane techniques

framing hands

PV182: Human Computer Interaction, 02.12.2018

The Image Plane technique

Image Plane Hardware: 2 ARTproGloves

PV182: Human Computer Interaction, 02.12.2018

Interaction Techniques

Advantages Image plane (Pierce, 1997) Easy, intuitive selection

Ray-casting with "fishing reel" (Bowman, 1997)

Distance control to raycasting

Disadvantages Image plane

Remote object manipulation impossible

Ray-casting with "fishing reel"

Extra control device separates manipulation degree of freedom Rotation is still difficult

The Go-Go technique

Different mapping to achieve a different control-display gain between real and virtual hands

Go-Go technique allows direct seamless 6DOF object manipulation both close to the user and at-a-distance.

World-in-Miniature, WIM

An alternative to extending the length of the user arm is to scale the entire world and bring it within the user reach.

World-in-Miniature (Stoakley, et al. 1995)

World-in-Miniature

The user can indirectly manipulate virtual objects by interacting with their representations in the WIM.

Easy object manipulation both within and outside of the area of user reach.

It can combine navigation with manipulation since the user can easily move his or her own representation on the WIM.

WIM metaphore

41

WIM - video

PV182: Human Computer Interaction, 02.12.2018

Selection in WIM

WIM and raycasting

World in Miniature Hardware: 1 WiiMote + Handtracker

Interaction Techniques

Advantages

Go-Go

Seamless 6DOF manipulation in a large range of distances Intuitive and enjoyable

World-in-Miniature

Allows 6DOF manipulation and any distance

Disadvantages *Go-Go*

Manipulation range is still limited

Overshoot with large distances

World-in-Miniature

Difficult to precisely manipulate small objects

Technique Combination/Examples

Hybrid techniques

- HOMER (Bowman, 1997)
- World-scale grab (Mine, 1997)
- Voodoo Dolls (Pierce, 1999)

46

Virtual Tricorder

Tools combined

WIM and Mirror with the auxiliary display

Objects behind obstacles

HOMER

HOMER (Bowman et al., 1997) –

Hand-centered Object Manipulation Extending Ray-casting technique.

The user selects an object using ray-casting and after that, instead having the object attached to the ray, the user's virtual hand instantly moves to the object and attaches to it.

Hand manipulation technique

HOMER (hand centered object manipulation extending ray casting)

User first selects an object using an image-plane technique

After selection the technique scales down the whole virtual environment, so that objects are brought within the user reach and are manipulated using the simple virtual hand.

The scaling coefficient is calculated so that the *visual size* of objects in the environment remains unchanged.

Automatic scaling

Hybrid Techniques

Advantages

HOMER (Bowman et al., 1997) Scaled-world grab (Mine et al., 1997)

Easy selection: ray-casting or image plane 6DOF Manipulation on a wide range of distances Mine: manipulation within normal area of reach

Disadvantages

HOMER

Scaled-world grab

Moving objects from within reach to far is problematic Inconsistency in mappings between physical and virtual hands movements

Voodoo Dolls

Two-handed interaction technique for manipulating objects at a distance in immersive virtual environments.

It aims to provide an easy method of interacting with objects of widely varying sizes and at different distances.

To start object manipulation the user dynamically creates dolls: temporary, miniature, hand-held copies of objects.

The manipulated virtual objects can be at any distance, size and state of occlusion.

The user can interactively specify a frame of reference for manipulation. The doll in the non-dominant hand represents a stationary frame of reference, and the corresponding virtual object does not move when the user moves this doll.

Voodoo Dolls

The doll that in the dominant hand represents a manipulated object; the corresponding virtual object moves to the same position and orientation relative to the virtual object represented by the doll in non-dominant hand.

Voodoo Doll scales down/up dolls to a convenient size, thus overcoming one of the limitations of the WIM technique.

It separates the selection mode from the manipulation mode: the user first selects an objects by using an Image Plane technique, then the technique switches to the manipulation mode, and switches back to the selection mode when the dolls are released.

Hybrid Techniques (II)

Advantages

Voodoo Dolls (Pierce et al., 1999)

Manipulation on large range of distances and scales

One-to-one mapping in object manipulation

Manipulation of animated, moving objects

Disadvantages Voodoo Dolls

More complex than all other techniques Requires use of pinch gloves

Component-based taxonomy of techniques

For example, in a manipulation task, the object can be positioned, rotated, and the feedback should be provided, etc.

Instead of classifying the techniques as a whole, we only classify components that accomplish these subtasks within techniques.

As a result, theoretically, any technique can be constructed out of these components simply by picking the appropriate components and putting them together.

Classification: By Component

Conclusions and further work

- Further evaluations of techniques
- Techniques for new input/output devices
- Re-evaluation of today's techniques for new input/output devices
- **Techniques integration**
- Multiple modalities
- Techniques for complex tasks
- Standards and guidelines